Application of the SU(1, 1) spinors in the study of the Lorentz transformations

Authors

DOI:

https://doi.org/10.31349/RevMexFis.69.040701

Keywords:

Lorentz transformations, spinors, Wigner angle, hyperbolic geometry, holonomy angle

Abstract

We show that the orthochronous proper Lorentz transformations that preserve the condition z = 0 can be parametrized by (two-component) SU(1, 1) spinors in such a way that the Wigner angle associated with a pair of non-collinear boosts is given by one of the scalar products defined between these spinors

References

G.F. Torres del Castillo, Application of the double numbers in the representation of the Lorentz transformations, Rev. Mex. Fís. E 20 (2023) 010204. https://doi.org/10.31349/RevMexFisE.20.010204.

P.K. Aravind, The Wigner angle as an anholonomy in rapidity space, Am. J. Phys. 65 (1997) 634. https://doi.org/10.1119/1.18620.

G.F. Torres del Castillo, Spinors in three dimensions. II, Rev. Mex. Fís. 40 (1994) 195.

G.F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications (Springer, New York, 2003), Secs. 1.4, 5.2.2, 5.4. https://doi.org/10.1007/978-0-8176-8146-3.

R. Penrose and W. Rindler, Spinors and Space-Time, Vol. 1 (Cambridge University Press, Cambridge, 1984). https://doi.org/10.1017/CBO9780511564048.

G.F. Torres del Castillo, Spinors in Four-Dimensional Spaces (Springer, New York, 2010). https://doi.org/10.1007/978-0-8176-4984-5.

S. Carlip, Quantum Gravity in 2 + 1 Dimensions (Cambridge University Press, Cambridge, 1998).

D. Han, E.E. Hardekopf and Y.S. Kim, Thomas precession and squeezed states of light, Phys. Rev. A 39 (1989) 1269. https://doi.org/10.1103/PhysRevA.39.1269.

G.S. Agarwal, Quantum theory of partially polarizing devices and SU(1, 1) Berry phases in polarization optics, Opt. Commun. 82 (1991) 213. https://doi.org/10.1016/0030-4018(91)90447-L.

H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass., 1980). Sec. 4-5.

J.A. Rhodes, M.D. Semon, Relativistic velocity space, Wigner rotation and Thomas precession, Am. J. Phys. 72 (2004) 943. https://doi.org/10.1119/1.1652040.

G.F. Torres del Castillo, Spinor representation of an electromagnetic plane wave, J. Phys. A: Math. Theor. 41 (2008) 115302. https://doi.org/10.1088/1751-8113/41/11/115302.

Downloads

Published

2023-07-04

How to Cite

[1]
G. F. Torres del Castillo, “Application of the SU(1, 1) spinors in the study of the Lorentz transformations”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 040701 1–, Jul. 2023.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory