A new approach to contact angle measurement and effects of evaporation on the contact angle

Authors

  • Musa Faruk Cakir Çankırı Karatekin University

DOI:

https://doi.org/10.31349/RevMexFis.70.031003

Keywords:

Contact angle measuring system; full angle method; wettability; evaporation effect; contact angle

Abstract

The solid material's wettability behavior is determined by the contact angle value. The wettability of materials is critical in the coating, lubricating, and insulating industries. In high-tech industries including corrosion resistance, water-oil separation, medical material production, implant technology, and friction reduction, the contact angle is very important. A new method called the full angle method was used to measure the contact angle and compared with current methods. The wettability behavior of plexiglass, which is employed in a variety of applications ranging from lighting to decorating, and industrial designs to accessory production, was explored in this study. The measurement of the contact angle was done by dropping 1.8 M (molar) of saltwater over the plexiglass materials. In order to examine the effect of evaporation on the contact angle, changes in contact angle, height and baseline were investigated depending on the waiting time. 

References

Xu, Z. An exact model-based dynamic contact angle algorithm. Measurement, 129 (2018) 611-624. https://doi.org/10.1016/j.measurement.2018.07.082

Márquez-Herrera, A., Zapata-Torres, M., & Montesinos, S. Evaluation of an electrochemical cell 3D-printed with PLA/PTFE polymer filament. Revista Mexicana de Fisica, 68(4) (2022) 041002. https://doi.org/10.31349/RevMexFis.68.041002

Danish, M., Nadhari, W. N. A. W., Ahmad, T., Hashim, R., Sulaiman, O., Ahmad, M., ... & Salleh, K. M. Surface measurement of binderless bio-composite particleboard through contact angle and fractal surfaces. Measurement, 140 (2019) 365-372. https://doi.org/10.1016/j.measurement.2019.03.049

Ma, J., Zhang, X. Y., Wang, D. P., Zhao, D. Q., Ding, D. W., Liu, K., & Wang, W. H.. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance. Applied Physics Letters, 104(17) (2014) 173701. https://doi.org/10.1063/1.4874275

Wang, Q., Wu, J., Meng, G., Wang, Y., Liu, Z., & Guo, X. Preparation of novel cotton fabric composites with pH controlled switchable wettability for efficient water-in-oil and oil-in-water emulsions separation. Applied Physics A, 124(6) (2018) 1-12. https://doi.org/10.1007/s00339-018-1781-4

Castrejón-García, R., Castrejón-Pita, J. R., Martin, G. D., & Hutchings, I. M. The shadowgraph imaging technique and its modern application to fluid jets and drops. Revista mexicana de física, 57(3) (2011) 266-275.

Kim, S., Wang, T., Zhang, L., & Jiang, Y. Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces. Journal of Mechanical Science and Technology, 34(1) (2020) 219-228. https://doi.org/10.1007/s12206-019-1223-z

Kotra-Konicka, K., Kalbarczyk, J., & Gac, J. M. Modification of polypropylene membranes by ion implantation. Chemical and Process Engineering, 37(3), (2016) 331-339.

https://doi.org/10.1515/cpe-2016-0027

Zheng, D., Wang, M., Wang, M., Zhai, M., & Wang, W. Measurement of droplet size and velocity based on a single tapered fiber optical reflectometer. Measurement, 189 (2022) 110487. https://doi.org/10.1016/j.measurement.2021.110487

O’Connell, C., Sherlock, R., Ball, M. D., Aszalos-Kiss, B., Prendergast, U., & Glynn, T. J. Investigation of the hydrophobic recovery of various polymeric biomaterials after 172 nm UV treatment using contact angle, surface free energy and XPS measurements. Applied Surface Science, 255(8) (2009) 4405-4413. https://doi.org/10.1016/j.apsusc.2008.11.034

Hodgson, G., Passmore, M., Skarysz, M., Garmory, A., & Paolillo, F. Contact angle measurements for automotive exterior water management. Experiments in Fluids, 62(5) (2021) 1-13. https://doi.org/10.1007/s00348-021-03219-2

Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L., & Hüttig, F. Surface characteristics of dental implants: A review. Dental materials, 34(1) (2018). 40-57. https://doi.org/10.1016/j.dental.2017.09.007

Du, X. Q., Liu, Y. W., & Chen, Y. Enhancing the corrosion resistance of aluminum by superhydrophobic silane/graphene oxide coating. Applied Physics A, 127(8) (2021) 1-11. https://doi.org/10.1007/s00339-021-04730-3.

Mazzola, L., & Bruno, G. Characterization of ice-phobic surfaces: Improvements on contact angle measurements. Measurement, 110 (2017) 202-210. https://doi.org/10.1016/j.measurement.2017.06.036

Marmur, A., Della Volpe, C., Siboni, S., Amirfazli, A., & Drelich, J. W. Contact angles and wettability: towards common and accurate terminology. Surface Innovations, 5(1) (2017) 3-8. https://doi.org/10.1680/jsuin.17.00002

Jagadisan, A., & Heidari, Z. Molecular dynamic simulation of the impact of thermal maturity and reservoir temperature on the contact angle and wettability of kerogen. Fuel, 309 (2022). 122039. https://doi.org/10.1016/j.fuel.2021.122039

Drelich, J. W., Boinovich, L., Chibowski, E., Della Volpe, C., Hołysz, L., Marmur, A., & Siboni, S. Contact angles: History of over 200 years of open questions. Surface Innovations, 8(1–2) (2019) 3-27. https://doi.org/10.1680/jsuin.19.00007

Bąkała, M., Wojciechowski, R., Sankowski, D., & Rylski, A. Semi-automatic apparatus for measuring wetting properties at high temperatures. Metrology and Measurement Systems, 24(1) (2017). https://doi.org/10.1515/mms-2017-004

Hung, Y. L., Chang, Y. Y., Wang, M. J., & Lin, S. Y. A simple method for measuring the superhydrophobic contact angle with high accuracy. Review of Scientific Instruments, 81(6) (2010) 065105. https://doi.org/10.1063/1.3449325

Whyman, G., Bormashenko, E., & Stein, T. The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Physics Letters, 450(4-6) (2008) 355-359. https://doi.org/10.1016/j.cplett.2007.11.033

Karhan, M., Çakır, M. F., & Arslan, Ö. Investigation of the effect of roughness value on the wettability behavior under electric field in XLPE materials used in medium and high voltage applications. Electrical Engineering, 103(6) (2021) 3225-3238. https://doi.org/10.1007/s00202-021-01326-1

Sudeepthi, A., Yeo, L., & Sen, A. K. Cassie–Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves. Applied Physics Letters, 116(9) (2020) 093704. https://doi.org/10.1063/1.5145282

Cakir, M. F. An inexpensive contact angle measurement system. REVISTA MEXICANA DE FISICA, 68(2). (2022). https://doi.org/10.31349/RevMexFis.68.021001

Downloads

Published

2024-05-01

How to Cite

[1]
M. F. Cakir, “A new approach to contact angle measurement and effects of evaporation on the contact angle”, Rev. Mex. Fís., vol. 70, no. 3 May-Jun, pp. 031003 1–, May 2024.