A new approach to contact angle measurement and effects of evaporation on the contact angle
DOI:
https://doi.org/10.31349/RevMexFis.70.031003Keywords:
Contact angle measuring system; full angle method; wettability; evaporation effect; contact angleAbstract
The solid material's wettability behavior is determined by the contact angle value. The wettability of materials is critical in the coating, lubricating, and insulating industries. In high-tech industries including corrosion resistance, water-oil separation, medical material production, implant technology, and friction reduction, the contact angle is very important. A new method called the full angle method was used to measure the contact angle and compared with current methods. The wettability behavior of plexiglass, which is employed in a variety of applications ranging from lighting to decorating, and industrial designs to accessory production, was explored in this study. The measurement of the contact angle was done by dropping 1.8 M (molar) of saltwater over the plexiglass materials. In order to examine the effect of evaporation on the contact angle, changes in contact angle, height and baseline were investigated depending on the waiting time.
References
Xu, Z. An exact model-based dynamic contact angle algorithm. Measurement, 129 (2018) 611-624. https://doi.org/10.1016/j.measurement.2018.07.082
Márquez-Herrera, A., Zapata-Torres, M., & Montesinos, S. Evaluation of an electrochemical cell 3D-printed with PLA/PTFE polymer filament. Revista Mexicana de Fisica, 68(4) (2022) 041002. https://doi.org/10.31349/RevMexFis.68.041002
Danish, M., Nadhari, W. N. A. W., Ahmad, T., Hashim, R., Sulaiman, O., Ahmad, M., ... & Salleh, K. M. Surface measurement of binderless bio-composite particleboard through contact angle and fractal surfaces. Measurement, 140 (2019) 365-372. https://doi.org/10.1016/j.measurement.2019.03.049
Ma, J., Zhang, X. Y., Wang, D. P., Zhao, D. Q., Ding, D. W., Liu, K., & Wang, W. H.. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance. Applied Physics Letters, 104(17) (2014) 173701. https://doi.org/10.1063/1.4874275
Wang, Q., Wu, J., Meng, G., Wang, Y., Liu, Z., & Guo, X. Preparation of novel cotton fabric composites with pH controlled switchable wettability for efficient water-in-oil and oil-in-water emulsions separation. Applied Physics A, 124(6) (2018) 1-12. https://doi.org/10.1007/s00339-018-1781-4
Castrejón-García, R., Castrejón-Pita, J. R., Martin, G. D., & Hutchings, I. M. The shadowgraph imaging technique and its modern application to fluid jets and drops. Revista mexicana de física, 57(3) (2011) 266-275.
Kim, S., Wang, T., Zhang, L., & Jiang, Y. Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces. Journal of Mechanical Science and Technology, 34(1) (2020) 219-228. https://doi.org/10.1007/s12206-019-1223-z
Kotra-Konicka, K., Kalbarczyk, J., & Gac, J. M. Modification of polypropylene membranes by ion implantation. Chemical and Process Engineering, 37(3), (2016) 331-339.
https://doi.org/10.1515/cpe-2016-0027
Zheng, D., Wang, M., Wang, M., Zhai, M., & Wang, W. Measurement of droplet size and velocity based on a single tapered fiber optical reflectometer. Measurement, 189 (2022) 110487. https://doi.org/10.1016/j.measurement.2021.110487
O’Connell, C., Sherlock, R., Ball, M. D., Aszalos-Kiss, B., Prendergast, U., & Glynn, T. J. Investigation of the hydrophobic recovery of various polymeric biomaterials after 172 nm UV treatment using contact angle, surface free energy and XPS measurements. Applied Surface Science, 255(8) (2009) 4405-4413. https://doi.org/10.1016/j.apsusc.2008.11.034
Hodgson, G., Passmore, M., Skarysz, M., Garmory, A., & Paolillo, F. Contact angle measurements for automotive exterior water management. Experiments in Fluids, 62(5) (2021) 1-13. https://doi.org/10.1007/s00348-021-03219-2
Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L., & Hüttig, F. Surface characteristics of dental implants: A review. Dental materials, 34(1) (2018). 40-57. https://doi.org/10.1016/j.dental.2017.09.007
Du, X. Q., Liu, Y. W., & Chen, Y. Enhancing the corrosion resistance of aluminum by superhydrophobic silane/graphene oxide coating. Applied Physics A, 127(8) (2021) 1-11. https://doi.org/10.1007/s00339-021-04730-3.
Mazzola, L., & Bruno, G. Characterization of ice-phobic surfaces: Improvements on contact angle measurements. Measurement, 110 (2017) 202-210. https://doi.org/10.1016/j.measurement.2017.06.036
Marmur, A., Della Volpe, C., Siboni, S., Amirfazli, A., & Drelich, J. W. Contact angles and wettability: towards common and accurate terminology. Surface Innovations, 5(1) (2017) 3-8. https://doi.org/10.1680/jsuin.17.00002
Jagadisan, A., & Heidari, Z. Molecular dynamic simulation of the impact of thermal maturity and reservoir temperature on the contact angle and wettability of kerogen. Fuel, 309 (2022). 122039. https://doi.org/10.1016/j.fuel.2021.122039
Drelich, J. W., Boinovich, L., Chibowski, E., Della Volpe, C., Hołysz, L., Marmur, A., & Siboni, S. Contact angles: History of over 200 years of open questions. Surface Innovations, 8(1–2) (2019) 3-27. https://doi.org/10.1680/jsuin.19.00007
Bąkała, M., Wojciechowski, R., Sankowski, D., & Rylski, A. Semi-automatic apparatus for measuring wetting properties at high temperatures. Metrology and Measurement Systems, 24(1) (2017). https://doi.org/10.1515/mms-2017-004
Hung, Y. L., Chang, Y. Y., Wang, M. J., & Lin, S. Y. A simple method for measuring the superhydrophobic contact angle with high accuracy. Review of Scientific Instruments, 81(6) (2010) 065105. https://doi.org/10.1063/1.3449325
Whyman, G., Bormashenko, E., & Stein, T. The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Physics Letters, 450(4-6) (2008) 355-359. https://doi.org/10.1016/j.cplett.2007.11.033
Karhan, M., Çakır, M. F., & Arslan, Ö. Investigation of the effect of roughness value on the wettability behavior under electric field in XLPE materials used in medium and high voltage applications. Electrical Engineering, 103(6) (2021) 3225-3238. https://doi.org/10.1007/s00202-021-01326-1
Sudeepthi, A., Yeo, L., & Sen, A. K. Cassie–Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves. Applied Physics Letters, 116(9) (2020) 093704. https://doi.org/10.1063/1.5145282
Cakir, M. F. An inexpensive contact angle measurement system. REVISTA MEXICANA DE FISICA, 68(2). (2022). https://doi.org/10.31349/RevMexFis.68.021001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Musa Faruk Cakir
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.