The linear and the angular momentum stored in a distribution of charges in a magnetic field

Authors

DOI:

https://doi.org/10.31349/RevMexFis.69.050701

Keywords:

Linear momentum; angular momentum; electromagnetic field; symmetries

Abstract

We show that it is possible to define, e.g., the z-component of the linear momentum of the system formed by a charged particle and a magnetic field if and only if the magnetic field is invariant under translations along the z-axis. Similarly, it is possible to define the z-component of the angular momentum of the system formed by a charged particle and a magnetic field if and only if the magnetic field is invariant under rotations about the z-axis.

References

J.R. Reitz, F.J. Milford, and R.W. Christy, Foundations of Electromagnetic Theory, 4th ed. (Addison-Wesley, Reading, Mass., 1979)

D.J. Griffiths, Introduction to Electrodynamics, 4th ed. (Pearson, Boston, 2013) https://doi.org/10.1017/9781108333511

J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998). Sec. 6.8

J.M. Aguirregabiria and A. Hernandez, The Feynman paradox revisited, Eur. J. Phys. 2 (1981) 168. https://doi.org/10.1088/0143-0807/2/3/009

T. Padmanabhan, Sleeping Beauties in Theoretical Physics (Springer, Cham, 2015). Chap. 22. https://doi.org/10.1007/978-3-319-13443-7

R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. II (Addison-Wesley, Reading, Mass., 1964). §17-4

G.F. Torres del Castillo and A. Narvaez-Cao-Romero, Derivation of conservation laws and their relationship with symmetries without Lagrangians, Eur. J. Phys. 39 (2018) 045006. https://doi.org/10.1088/1361-6404/aabf6e

G.F. Torres del Castillo, An Introduction to Hamiltonian Mechanics (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-95225-3

G.F. Torres del Castillo, On Feynman’s paradox, Rev. Mex. Fıs. E 20 (2023) 020201 https://doi.org/10.31349/RevMexFisE.20.020201

Downloads

Published

2023-09-01

How to Cite

[1]
G. F. Torres del Castillo, “The linear and the angular momentum stored in a distribution of charges in a magnetic field”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 050701 1–, Sep. 2023.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory