Hubbard's parameter influence on Ba2GdReO6 properties, a promising ferromagnetic double Pérovskite oxide for thermoelectric applications


  • Y. Bouchentouf Idriss Mustapha Stambouli University of Mascara
  • B. Bouadjemi Abdelhamid Ibn Badis University
  • M. Matougui Abdelhamid Ibn Badis University
  • Mohammed Houari University of Relizane
  • T. Lantri Abdelhamid Ibn Badis University
  • S. Haid Abdelhamid Ibn Badis University
  • S. Bentata Mustapha Stambouli University of Mascara



FP-LAPW, Half-metallicity, Electrical conductivity, Ferromagnetic, Seebeck coefficient, thermoelectric applications


In this paper, an exhaustive investigation was carried out on the compound double Perovskite Ba2GdReO6 including its structural, electronic, magnetic and thermoelectric properties. This study is based on the density functional theory (DFT) and more explicitly on the full potential linearized augmented plane wave (FP-LAPW), in the context of different approximations as exchange and correlation potential such as: The generalized gradient approximation (GGA) and its corollary the Becke – Johnson approach modified by Trans-Blaha (TB - mBJ) for a better approximation of the gap, and the GGA + U approach (where U is the Hubbard correction term). After an analysis of the results obtained, it turns out that the double perovskite material Ba2GdReO6 is a ferromagnetic material and has a half-metallic character, moreover, this compound has an integral magnetic moment of 9µB, which is in accordance with the rule of Slater-Pauling. From the study of the thermoelectric properties consisting in plotting curves of different parameters such as: the Seebeck coefficient (S), electrical conductivity per relaxation time (σ/τ), the electronic thermal conductivity per relaxation time ( /τ)  and the merit factor (ZT) as a function of temperature, based on the GGA+U approximation, which is most suitable for the study of this compound, it emerges that the double pérovskite Ba2GdReO6 presents thermoelectric performances in medium to high temperature ranges, in view of the high values ​​of the Seebeck coefficient and those of the electrical conductivity as well as a value close to unity for the merit factor, therefore, this compound can be used for thermoelectric applications in this range of temperatures (medium to high).


D.D. Sarma, Current Opinion in Solid State and Materials Science 5 (2001) 261-268.

K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395 (1998) 677.

K.I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura, Y. Tokura, Phys. Rev. B 59 (1999) 11159.

G. Vaitheeswarna, V. Kanchana, Appl. Phys. Lett. 86 (2005) 032513.

W.E. Pickett, Phys. Rev. B 57 (1998) 10613.

E.F.V. Carvalho. E.M. Diniz. C.W.A. Paschoal, Comput. Mater. Sci. 40 (2007) 417.

S. Kumar, G. Giovannetti, J. van den Brink, S. Picozzi, Phys. Rev. B 82 (2010) 134429.

M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127 (2005) 8889.

C. Meneghini, S. Ray, F. Liscio, F. Bardelli, S. Mobilio, D.D. Sarma, Phys. Rev. Lett. 103 (2009) 046403.

S.H. Lv, X.J. Liu, H.P. Li, Z.J. Wu, J. Meng, Comput. Mater. Sci. 49 (2010) 266.

G. Sharma, T.S. Tripathi, J. Saha, S. Patnaik, Journal of Magnetism and Magnetic Materials. 368 (2014) 318-323.

V. Franco, J.S. Blzquez, B. Ingale, A. Conde, Annu. Rev. Mater. Res. 42 (2012) 305.

I. Gorodea, M. Goanta, M. Toma, Journal of Alloys and Compounds. 632 (2015) 805-809.

H. Das, M. De Raychaudhury, T. Saha Dasgupta, Appl. Phys. Lett. 92 (2008) 201912.

Slimane Haid, Bouabdellah Bouadjemi et al, Solid State Communications 322 (2020) 114052.

M. Houari, B. Bouadjemi, et al., Chin. J. Phys. 56 (2018) 1756–1763.

A. Souidi, S. Bentata, et al., Mater. Sci. Semicond. Process. 43 (2016) 196–208.

B. Djelti, S. Bentata, et al., Appl. Phys. A 124 (2018) 622.

S. Haid, B. Bouadjemi, et al., J. Supercond. Nov. Magnetism 31 (2018) .

Yan Zhang, Vincent Ji, Ke-Wei Xu, Phys. B Condens. Matter 407 (2012) 261.

K.M. Nicholson, S.G. Kang, D.S. Sholl, Journal of alloys and compounds 577 (2013) 463.

M. Falin, K. Gerasimov, A. Leushin, N. Khaidukov, Journal of luminescence 128 (2008) 1103.

S. Ananthakumar, J.R. Kumar, S.M. Babu, Journal of Photonics for Energy 6 (2016) 042001.

M. Roknuzzaman, C. Zhang, K.K. Ostrikov, A. Du, H. Wang, L. Wang, T. Tesfamichael, Scientific reports 9 (2019) 1.

X. Xu, Y. Zhong, Z. Shao, Trends in Chemistry 1 (2019) 410.

X. Du, D. He, H. Mei, Y. Zhong, N. Cheng, Physics Letters A 384 (2020) 126169.

E. Haque, M.A. Hossain, Computational Condensed Matter 19 (2019) e00374.

R. Mishra, A.S. Thind, G. Pilania, S. Kavadiya, P. Biswas, Lead-free double perovskites for photovoltaic applications. Google Patents, (2019).

G. Liu, C. Wu, Z. Zhang, Z. Chen, L. Xiao, B. Qu, Solar RRL 4 (2020) 2000056.

N. Shahed, M. Nishat, S. Khanom, M. Hossain, M. Hossain, F. Ahmed, Computational Condensed Matter 23 (2020) e00464.

B. Bouadjemi, M. Houari, S.Benatmane, M. Matougui, S. Haid, S. Bentata and B. Bouhafs, Computational Condensed Matter 26(2021) e00531.

F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401(2009).

G. K. Madsen and D. J. Singh, Comput. Phys.Commun. 175, 67 (2006).

M. Matougui, B. Bouadjemi, M. Houari, A.Zitouni, T. Lantri, S. Haid, S. Bentata ,B. Bouhafs, Z. Aziz and R.Khenata, Indian J Phys (19 January2021).

M. Houari, B. Bouadjemi, T. Lantri, M. Matougui, S. Haid, S. Mesbah, A. Zitouni, S. Bentata, Z. Aziz and B. Bouhafs, SPIN Vol. 11, No. 1 (26 January 2021) 2150009 (1-14).

R Bentata, S Cherid, S Terkhi, B. Bouadjemi, D Chenine, M. Houari, M. Matougui, S. Bentata and Z. Aziz ,Journal of Computational Electronics (17 April 2021).

S. Haid, M. Matougui, S. Benatmane, B. Bouadjemi, M. Houari, A. Zitouni, T. Lantri & S. Bentata, Journal of Superconductivity and Novel Magnetism, (28 August 2021).

O.K. Andersen, Phys. Rev. B 12 (1975) 3060.

K. M. Wong, S. M. Alay-e-Abbas, A. Shaukat, Y. Fang, Y. Lei, J. Appl. Phys. 113 (2013) 014304.

K. M. Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114 (2013) 034901.

P. Blaha,K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001 ISBN 3-9501031-1-2.

P. J. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett 77 (18), 3865–3868; (1996).

T. Rezkallah, I. Djabri,M. M. Koç,M. Erkovan, Y. Chumakov, F. Chemam Investigation of the electronic and magnetic properties of Mn doped ZnO using the FP-LAPW method Chin. J. Phys 55 (4), 1432-1440; (2017).

G. K. H Madsen and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities Comput Phys Commun., 175 (1), 67-71; (2006).

F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (9) (1944) 244–247. [46] S. Dimitrovska, S. Aleksovska, I. Kuzmanovski, Open Chem. 3 (2005) 198. [47] Rehan Ullah, M. Azmat Ali et al., J. of Magnetism and Magnetic Materials 546 (2022) 168816.

Sofi, SA, Gupta, DC. Robustness in ferromagnetic phase stability, half-metallic behavior and transport properties of cobalt-based full-Heuslers compounds: A first principles approach. Int, J Quantum Chem. 2021; 121:e26538.

P.K. Kamlesh, R. Gautam, S. Kumari, A.S. Verma, Investigation of inherent properties of XScZ (X = Li, Na, K; Z = C, Si, Ge) half-Heusler compounds: Appropriate for photovoltaic and thermoelectric applications, Physica B: Physics of Condensed Matter (2020), doi: https://

S. Haid, W Benstaali, A Abbad, B Bouadjemi, S Bentata, Z Aziz, " Thermoelectric, Structural, Optoelectronic and Magnetic properties of double perovskite Sr2CrTaO6: First principle Study,"J. Materials Science & Engineering B 245 (2019) 68–74,

B. Bouadjemi, T. Lantri, M. Matougui, M. Houari, R. Bentata, Z. Aziz and S. Bentata, " High Spin Polarization and Thermoelectric Efficiency of Half-Metallic Ferromagnetic CrYSn (Y = Ca, Sr) of Half-Heusler Compounds.," SPIN Vol. 10, No. 1 (2020) 2050010 (1-14)

M. Matougui, B. Bouadjemi, M. Houari, S. Haid, T. Lantri, A.Zitouni, S. Bentata, B. Bouhafs, Z. Aziz," Rattling Heusler semiconductors’ thermoelectric properties: First-principles prediction" Chinese Journal of Physics, Vol : 57 (2019) 195-210.

M. Houari, B. Bouadjemi, S. Haid, M. Matougui, T. Lantri, Z. Aziz, et al."Semiconductor behavior of halide perovskites AGeX3 (A= K, Rb and Cs; X= F, Cl and Br): first-principles calculations," Indian J Phys , pp. 1-13, 2019,

G.K. Madsen, D.J. Singh, Computer Physics Communications 175 (2006) 67

A. Bejan, A.D. Kraus, Heat transfer handbook, John Wiley & Sons, 2003




How to Cite

Y. Bouchentouf Idriss, “Hubbard’s parameter influence on Ba2GdReO6 properties, a promising ferromagnetic double Pérovskite oxide for thermoelectric applications”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 051006 1–, Sep. 2023.