ZnO and ZnO-nanorods thin films as supported catalysts for enhanced dye degradation

Authors

  • C. Valero-Luna Universidad Autónoma de Zacatecas
  • M.R. Alfaro Cruz Universidad Autónoma de Nuevo León
  • A. Bañuelos-Frias Universidad Autónoma de Zacatecas
  • G. Ortega-Zarzosa Universidad Autónoma de San Luis Potosí

DOI:

https://doi.org/10.31349/RevMexFis.71.041003

Keywords:

Thin films; ZnO; photocatalysis; nanorods; semiconductors

Abstract

Zinc oxide (ZnO) thin films and ZnO nanorod thin films were prepared via sol-gel and chemical bath deposition methods at low temperatures, respectively, and tested for their ability to photocatalytically degrade Methylene Blue. Both films were oriented in the c-axis in the (002) plane, but the crystallinity of the ZnO nanorod film was better than the ZnO seed layer. The surface morphology of the ZnO film was in ripple form, allowing the ZnO-nanorods to grow around the ripples and increase the contact area with the solution. The ZnO nanorod film enhances the adsorption process. After 2.49 hours of irradiation, 50% of the dye degrades, and 80% degrades after 6 hours. The structural properties, such as good crystallinity and the orientation in the (002) plane, help improve the films’ photocatalytic efficiency. ZnO and ZnO-nanorod films could be considered efficient and green options for the photocatalytic process of decomposing organic pollutants in an aqueous medium.

References

R. Kumar et al., Zinc oxide nanostructure-based dye-sensitized solar cells, J. Mater. Sci. 52 (2021) 4743, https://doi.org/10.1007/s10853-016-0668-z

P. Dhamodharan, J. Chen, and C. Manoharan, Fabrication of dye-sensitized solar cells with ZnO nanorods as photoanode and natural dye extract as sensitizer, J Mater Sci: Mater Electron 32 (2021) 13418, https://doi.org/10.1007/s10854-021-05920-8

X. Atanacio-Sánchez et al., Improving performance of ZnO flexible dye sensitized solar cell by incorporation of graphene oxide, Microsyst Technol 26 (2020) 3591, https://doi.org/10.1007/s00542-020-04820-x

M. Sinha, R. Mahapatra, B. Mondal, and R. Ghosh, A HighSensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature, Journal of Elec Materi 46 (2017) 2476, https://doi.org/10.1007/s11664-017-5316-0

A.B. Khatibani, Investigation of gas sensing property of zinc oxide thin films deposited by Sol-Gel method: effects of molarity and annealing temperature. Indian J Phys 95 (2021) 243, https://doi.org/10.1007/s12648-020-01689-4

N. Elamin, A. Modwi, M.A.B. Aissa, K. Kamal, Omer K. Taha, and T. A. Al-Duaij, Fabrication of Cr-ZnO photocatalyst by starch-assisted sol-gel method for photodegradation of congo red under visible light, J Mater Sci: Mater Electron 32 (2021) 2234, https://doi.org/10.1007/s10854-020-04988-y

M.S. Hamdy, et al., Novel Mg@ZnO nanoparticles synthesized by facile one-step combustion route for anti- microbial, cytotoxicity and photocatalysis applications, J Nanostruct Chem 11 (2021) 147, https://doi.org/10.1007/s40097-020-00355-9

E. Luevano-Hipólito, and L.M. Torres-Martínez, Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation, Mater. Sci. Eng. B 226 (2017) 223, https://doi.org/10.1016/j.mseb.2017.09.023

P. K. Aspoukeh, A. A. Barzinjy, and S.M. Hamad, Synthesis, properties and uses of ZnO nanorods: a mini review, Int Nano Lett 12 (2022) 153, https://doi.org/10.1007/s40089-021-00349-7

F. Mikailzade et al., Structural, optical, and magnetic characterization of nanorod-shaped polycrystalline Zn1- xMnxO films synthesized using sol-gel technique, Appl. Phys. A (2020) 126, https://doi.org/10.1007/s00339-020-03953-0

S. Goktas, and A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review, J Alloy Compd 863 (2021) 158734, https://doi.org/10.1016/j.jallcom.2021.158734

C. Reddy Chandraiahgari et al., Synthesis and characterization of ZnO nanorods with a narrow size distribution, RSC Adv. 5 (2015) 49861, https://doi.org/10.1039/C5RA02631H

A. Aljaafari, F. Ahmed, C. Awada, and N. M. Shaalan, FlowerLike ZnO Nanorods Synthesized by Microwave-Assisted OnePot Method for Detecting Reducing Gases: Structural Properties and Sensing Reversibility, Front. Chem. 8 (2020) 456, https://doi.org/10.3389/fchem.2020.00456

A. Di Mauro, M. Elena Fragalà, V. Privitera, and G. Impellizzeri, ZnO for application in photocatalysis: From thin films to nanostructures, Mat Sci Semicon Proc 69 (2017) 44, https://doi.org/10.1016/j.mssp.2017.03.029

K. Echendu, S. Z. Werta, F. B. Dejene, and V. Craciun, Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications, J Alloy Compd 769 (2018) 201, https://doi.org/10.1016/j.jallcom.2018.07.327

M. R. Islam, M. Rahman, S. F. U. Farhad, and J. Podder, Structural, optical and photocatalysis properties of sol-gel deposited Al-doped ZnO thin films, Surf Interfaces 16 (2019) 120, https://doi.org/10.1016/j.surfin.2019.05.007

J. Iqbal, A. Jilani, P.M. Ziaul Hassan, S. Rafique, R. Jafer, and A. A. Alghamdi, ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap, Journal of King Saud University - Science 28 (2016) 347, https://doi.org/10.1016/j.jksus.2016.03.001

J. Ungula, and H. C. Swart, Structural, morphological and optical properties of ZnO nanorods grown on a ZnO:Ga seeded thin film: The role of chemical bath deposition precursor concentration at constant and varying II/VI molar ratios, Thin Solid Films 687 (2019) 137483, https://doi.org/10.1016/j.tsf.2019.137483

E. H. H. Hasabeldaim, O. M. Ntwaeaborwa, R. E. Kroon, E. Coetsee, and H. C. Swart, Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure, Supper Lattice Microst 139 (2020) 106432, https://doi.org/10.1016/j.spmi.2020.106432

P. S. Shewale, S. H. Lee, and Y. S. Yu, Effects of annealing temperature of spin-coated ZnO seed-layer on UV photosensing properties of PLD grown ZnO: Mg thin films, J Alloy Compd 774 (2019) 461, https://doi.org/10.1016/j.jallcom.2018.09.294

P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, Effect of different dopant elements on the properties of ZnO thin films, Vacuum 64 (2002) 281, https://doi.org/10.1016/S0042-207X(01)00322-0

G. Ortiz Rabell, M.R. Alfaro Cruz, and I. Juárez-Ramírez, Hydrogen production of ZnO and ZnO/Ag films by photocatalysis and photoelectrocatalysis, Mat Sci Semicon Proc, 134 (2021) 105985, https://doi.org/10.1016/j.mssp.2021.105985

M. Popa et al., Highly c-axis oriented ZnO thin film using 1-propanol as solvent in sol-gel synthesis, Mater Lett 92 (2013) 267, https://doi.org/10.1016/j.matlet.2012.10.099

L. Cui, G.-G. Wang, H.-Y. Zhang, R. Sun, X.-P. Kuang, and J.-C. Han, Effect of film thickness and annealing temperature on the structural and optical properties of ZnO thin films deposited on sapphire (0001) substrates by sol-gel, Ceram Int 39 (2013) 3261, https://doi.org/10.1016/j.ceramint.2012.10.014

F. Yakuphanoglu, Evaluation of photoresponse in solutionprocessable ZnO thin film transistor for radiative sensor applications, Sens. Actuators, A, 173 (2012) 141, https://doi.org/10.1016/j.sna.2011.11.019

A. Kulis-Kapuscinska et al., Photocatalytic degradation of methylene blue at nanostructured ZnO thin films. Nanotechnology, 34 (2023) 155702

F. Zhang, W. Zhang, X. Luo, G. Feng, and L. Zhao, Electrodeposition of ZnO film with enhanced photocatalytic activity towards methylene blue degradation. International Journal of Electrochemical Science, 12 (2017) 3756

W. Vallejo, A. Cantillo, and C. Díaz-Uribe, (Methylene blue photodegradation under visible irradiation on Ag-Doped ZnO thin films. (International Journal of Photoenergy, 2020)

M. R. Alfaro Cruz et al., Impact of the annealing atmosphere in the electrical and optical properties of ZnO thin films, J Sol-Gel Sci Technol 79 (2016) 184, https://doi.org/10.1007/s10971-016-4035-y

M. R. Alfaro Cruz et al., Electrical, optical and structural properties of ZnO nanorods thin films deposited over ZnO substrates, Mater Lett 133 (2014) 293, https://doi.org/10.1016/j.matlet.2014.07.014

H. Kozuka, Radiative Striations in Spin-Coating Films. In: Klein L., Aparicio M., Jitianu A. (eds) Handbook of Sol-Gel Science and Technology. (Springer, Cham. 2016)

L. Hongxia et al., Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation, Vacuum 77 (2004) 57, https://doi.org/10.1016/j.vacuum.2004.08.003

E. Jiménez-González, J. A. Soto Urueta, and R. Suárez-Parra, Optical and Electrical Characteristics of Aluminum-Doped ZnO Thin Films Prepared by Sol Gel Technique, J Cryst Growth 192 (1998) 430, https://doi.org/10.1016/S0022-0248(98)00422-9

Y. Wang, W. Tang, and L. Zhang, Crystalline Size Effects on Texture Coefficient, Electrical and Optical Properties of Sputter-deposited Ga-doped ZnO Thin Films, J Mater Sci Technol 31 (2015) 175, https://doi.org/10.1016/j.jmst.2014.11.009

Y. Ozlem Altintas, A. Hanife, and S. Savas, Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts, Appl Surf Sci 390 (2016) 111, https://doi.org/10.1016/j.apsusc.2016.08.069

R. Dom, H. Gyu Kim and P. H. Borse, Efficient hydrogen generation over (100)-oriented ZnO nanostructured photoanodes under solar light, Cryst Eng Comm 16 (2014) 2432, https://doi.org/10.1039/C3CE42058B

E.S. Rajalekshmi and A. Moses Ezhil Raj, Effect of substrate temperature on structural and morphological studies by spray pyrolysed ZnO thin films, Solid State Commun, 338 (2021) 114479, https://doi.org/10.1016/j.ssc.2021.114479

T. Ungár, Characterization of nanocrystalline materials by X-ray line profile analysis, J Mater Sci, 42 (2007) 1584, https://doi.org/10.1007/s10853-006-0696-1

D. Raoufi and T. Raoufi, The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films, Appl. Surf. Sci., 255 (2009) 5812, https://doi.org/10.1016/j.apsusc.2009.01.010

M.F. Malek, Thermal annealing-induced formation of ZnO nanoparticles: Minimum strain and stress ameliorate preferred c-axis orientation and crystal-growth properties, J Alloy Compd 610 (2014) 575, https://doi.org/10.1016/j.jallcom.2014.05.036

Y. G. Wang et al., Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature, J. Appl. Phys. 94 (2003) 1597, https://doi.org/10.1063/1.1592007

R. Kumar, N. Khare, V. Kumar, and G. L. Bhalla, Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering, Appl. Surf. Sci., 254 (2008) 6509, https://doi.org/10.1016/j.apsusc.2008.04.012

Stephen Beeby, MEMS Mechanical Sensors, Artech House, 2004

O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, High quality ITO thin films grown by dc and RF sputtering without oxygen, J Phys D Appl Phys 43 (2010) 055402, https://doi.org/10.1088/0022-3727/43/5/055402

Q. Zhu, J. Lu, Y. Wang, Q. Feifei, S. Zengliang, and X. Chunxiang, Burstein-Moss Effect Behind Au Surface Plasmon Enhanced Intrinsic Emission of ZnO, Microdisks. Sci Rep, 6 (2016) 36194, https://doi.org/10.1038/srep36194

N. Azizah et al., Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film, Pro Nat Sci-Mater 30 (2020) 28, https://doi.org/10.1016/j.pnsc.2020.01.006

R. Mohan, K. Krishnamoorthy, and S. J. Kim, Enhanced photocatalytic activity of Cu-doped ZnO nanorods, Solid State Commun, 152 (2012) 375, https://doi.org/10.1016/j.ssc.2011.12.008

W. Zhou, H. Lui, R.I. Boughton, G. Du, J. Lin, J. Wang, and D. Lui, One-dimensional single- crystalline Ti-O based nanostructures: properties, synthesis, modifications and applications. J Mater Chem 20 (2010) 5993, https://doi.org/10.1039/B927224K

X. Wang, Z. Li, J. Shi, and Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev, 114 (2014) 9346, https://doi.org/10.1021/cr400633s

S. Teekateerawej, J. Nishino, and Y. Nosaka, Design and evaluation of photocatalytic micro-channel reactors using TiO2-coated porous ceramics, J Photochem Photobiol. A Chem, 179 (2005) 263, https://doi.org/10.1016/j.jphotochem.2005.08.024

V. Vaiano, O. Sacco, D. Pisano, D. Sannino, and P. Ciambelli, From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater, Chem Eng Sci, 137 (2015) 152, https://doi.org/10.1016/j.ces.2015.06.023

A. M. Ali, E. A. C. Emanuelsson, and D. A. Patterson, Conventional versus lattice photocatalysed reactions: Implications of the lattice oxygen participation in the liquid phase photocatalytic oxidation with nanostructured ZnO thin films on reaction products and mechanism at both 254 nm and 340 nm, Appl Catal B, 106 (2011) 323, https://doi.org/10.1016/j.apcatb.2011.05.033

O. Sacco, D. Sannino, and V. Vaiano, Packed bed photoreactor for the removal of water pollutants using visible light emitting diodes, Applied Sciences (Switzerland), 9 (2019). https://doi.org/10.3390/app9030472

C. Valero-Luna, S.A. Palomares-Sánchez, and F. Ruíz, Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue, Catal. Today, 15 (2016) 110, https://doi.org/10.1016/j.cattod.2015.08.049

A. M. Ali, E. A.C. Emanuelsson, and D. A. Patterson, Conventional versus lattice photocatalysed reactions: Implications of the lattice oxygen participation in the liquid phase photocatalytic oxidation with nanostructured ZnO thin films on reaction products and mechanism at both 254 nm and 340 nm, Appl. Catal, 106 (2011) 323, https://doi.org/10.1016/j.apcatb.2011.05.033

Downloads

Published

2025-07-01

How to Cite

[1]
C. Valero-Luna, M. Alfaro, A. Bañuelos-Frias, and G. Ortega-Zarzosa, “ZnO and ZnO-nanorods thin films as supported catalysts for enhanced dye degradation ”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 041003 1–, Jul. 2025.