Stability improvement of CH3NH3PbI3 hybrid perovskite through tin and chlorine doping


  • Bertha Oliva Aguilar Reyes IIM-UNAM, Unidad Morelia
  • T. E. Soto IIM-UNAM, Unidad Morelia
  • K. Sánchez IIM-UNAM, Unidad Morelia
  • O. Navarro IIM-UNAM, Unidad Morelia
  • A. Valdespino IIM-UNAM, Unidad Morelia
  • D. Y. Torres Martínez IIM-UNAM, Unidad Morelia



Hybrid perovskites; stability; doping; photovoltaic cells; bandgap


In recent years, the hybrid perovskite CH3NH3PbI3 has been widely studied because of its potential application in the fabrication of high efficiency solar cells. The main challenge is to avoid destabilization of this compound under working conditions. Indeed, the MAPbI3 begins to decompose into the precursor phases, a few hours or days after being formed. We reported a stability monitoring of doped compounds CH3NH3Pb0.9Sn0.1I2.8Cl0.2 and CH3NH3Pb0.75Sn0.25I2.5Cl0.5 obtained as films from solutions of the precursors in N-N dimethylformamide on chemically treated glass substrates. The monitoring was carried out using X-Ray diffraction and absorbance measurements in the UV-Vis region. The tetragonal symmetry initially determined for the three compounds, remains almost unaltered for CH3NH3Pb0.75Sn0.25I2.5Cl0.5 even after 600 days, under environmental conditions. The bandgap value for this doped perovskite is 1.44 eV.


A.Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 2024

J.-H. Im, J. Chung, S.-J. Kim, N.-G. Park, Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskitetype novel sensitizer CH3CH2NH3PbI3, Nanoscale Research Letters 7 (2012) 353

F. Deschler et al., High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors, J. Phys. Chem. Lett. 5 (2014) 1421

L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, Hole-transport material variation in fully vacuum deposited perovskite solar cells, APL Materials. 2 (2014) 081503

W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells, Appl. Phys. Lett. 106 (2015) 221104

R. Pandey et al., Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion, Adv. Mater. 31 (2019) 1807376

R.F. Service, Perovskite solar cells gear up to go commercial, Science. 354 (2016) 1214

L. Lanzetta et al., Nature Comm. 12 (2021) 2853

H. Syafutra et al., Nanomaterial. 10 (2020)1254

A. Kakekhani, R. N. Katti, A. M. Rappe, Water in hybrid perovskites: Bulk MAPbI3 degradation via super-hydrous state, APL Mater. 7 (2019) 041112

A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: Present efficiencies and future challenges, Science. 352 (2016) 6283

G. Grancini et al., The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics, J. Phys. Chem. Lett. 5 (2014) 3836

D.W. DeQuilettes et al., Impact of microstructure on local carrier lifetime in perovskite solar cells, Science. 348 (2015) 6235

A.H. Ip et al., A two-step route to planar perovskite cells exhibiting reduced hysteresis, Appl. Phys. Lett. 106 (2015) 143902

S. Yuan, Z. Qiu, H. Zhang, H. Gong, Y. Hao, B. Cao, Oxygen influencing the photocarriers lifetime of CH3NH3PbI3−xClx film grown by two-step interdiffusion method and its photovoltaic performance, Appl. Phys. Lett. 108 (2016) 033904

N. K. Kumawat, A. Dey, K. L. Narasimhan, D. Kabra, Near Infrared to Visible Electroluminescent Diodes Based on Organometallic Halide Perovskites: Structural and Optical Investigation, ACS Photonics. 2 (2015) 349.

F. El-Mellouhi, A. Marzouk, E. T. Bentria, S. N. Rashkeev, S. Kais, F. H. Alharbi, Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites, Chem. Sus. Chem. 9 (2016) 2648

O. Granas, D. Vinichenko, E. Kaxiras, Establishing the limits of efficiency of perovskite solar cells from first principles modeling, Nature Scientific Reports 6 (2016) 36108

S.N. Habisreutinger, D.P. McMeekin, H.J. Snaith, R.J. Nicholas, Research Update: Strategies for improving the stability of perovskite solar cells, Apl. Mater. 4 (2016) 091503

G.E. Eperon et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps, Science. 354 (2016) 6314

D.P. McMeekin et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science. 351 (2016) 6269

L. Liu, J.A. McLeod, R. Wang, P. Shen, S. Duhm, Tracking the formation of methylammonium lead triiodide perovskite, Appl. Phys. Lett. 107 (2015) 061904

D. Y. Torres-Martínez, M. Millan, B. Aguilar, O. Navarro, Synthesis and characterization of CH3NH3PbI3 perovskite thin films obtained in one step, Physica B. 585 (2020) 412081

Q.-K. Wang et al., Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation, Adv. Mater. Interfaces. 2 (2015) 1400528

M.I. Saidaminov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization, Nat. Commun. 6 (2015) 7586

X. Song, W. Wang, P. Sun, W. Ma, Z. Chen, Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells, Appl. Phys. Lett. 106 (2015) 033901

B.E. Cohen, S. Gamliel, L. Etgar, Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells, Apl. Mater. 2 (2014) 081502

X. Li, D. Bi, Ch Yi, J.-D. Dcoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Gratzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science. 353 (2016) 6294

R.G. Niemann et al., Halogen Effects on Ordering and Bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study, J. Phys. Chem. C 120 (2016) 2509

W. Nie et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science. 347 (2015) 6221

J. Ding et al., High-quality inorganic-organic perovskite CH3CH2NH3PbI3 single crystals for photo-detector applications, J. Mater. Sci. 52 (2017) 276

E. Guangqing Tai, R. T. Wang, J. Y. Chen, G. Xu, A WaterStable Organic-Inorganic Hybrid Perovskite for Solar Cells by Inorganic Passivation, Crystals. 9 (2019) 83

S.K. Ojha, A. Singh, A. Ojha, Modifications in structural morphology of CH3CH2NH3PbI3 perovskite using nitrilotriacetic acid and glycine as habit modifiers, Mater. Chem. Phys. 240 (2020) 122149

M. DeBastiani, V.D. Innocenzo, S.D. Stranks, H.J. Snaith, A. Petrozza, Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites, Apl. Mater. 2 (2014) 081509

J. Xie, Y. Liu, J. Liu, L. Le, Q. Gao, J. Li, S. Yang, J. Power Sources. 28 (2015) 349

D.K. Chaudhary, P. Kumar, L. Kumar, Impact of CH3CH2NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells, Chem. Phys. Lett. 685 (2017) 210




How to Cite

B. O. Aguilar Reyes, T. E. Soto, K. Sánchez, O. Navarro, A. Valdespino, and D. Y. Torres Martínez, “Stability improvement of CH3NH3PbI3 hybrid perovskite through tin and chlorine doping”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 051602 1–, Sep. 2023.