Revisión general de ADCs tipo Noise Shaping SAR: Fundamentos, retos y tendencias
DOI:
https://doi.org/10.31349/RevMexFis.69.041401Keywords:
Analog-digital conversion, noise shaping, SAR, oversampling, mismatchAbstract
An introduction to the study of Noise Shaping type successive approximation (SAR) analog-to-digital converters is presented, as well as a general description of the fundamentals of Noise Shaping SAR (NS SAR), its basic principles of operation and its main architectures. Open problems are addressed, fundamental challenges and main sources of error in processing circuits are reviewed, and state-of-the-art architecture developments are summarized, addressing various problems including loop filter, its passive/active implementations, and the mismatch in the elements of the DAC network, among others. Additionally, future trends and challenges are exposed.
Se presenta una introducción al estudio de los convertidores analógico-digital de aproximaciones sucesivas tipo Noise Shaping, así como una descripción general de los fundamentos del Noise Shaping SAR, sus principios básicos de operación y principales arquitecturas. Se abordan los problemas abiertos, se revisan los desafíos fundamentales y las fuentes de error principales en los circuitos de procesamiento, y se resumen los desarrollos de las arquitecturas de vanguardia, que hacen frente a diversos problemas que incluye el filtro de lazo, sus implementaciones pasivas/activas, y el mismatch presente en los elementos de red del DAC, entre otros. Adicionalmente, se exponen las tendencias y retos futuros.
References
C. Choi and J.-W. Lee, An 11.8-fJ/Conversion-Step Noise Shaping SAR ADC with Embedded Passive Gain for Energy- Efficient IoT Sensors, Sensors 22 (2022), https://doi.org/10.3390/s22030869
D. Chen, et al., A Survey on Analog-to-Digital Converter Integrated Circuits for Miniaturized High Resolution Ultrasonic Imaging System, Micromachines 13 (2022), https://doi.org/10.3390/mi13010114
L. B. Leene, S. Letchumanan, and T. G. Constandinou, A 68μW 31kS/s Fully-Capacitive Noise-Shaping SAR ADC with 102 dB SNDR, In 2019 IEEE International Symposium on Circuits and Systems (ISCAS) (2019) pp. 1–5, https://doi.org/10.1109/ISCAS.2019.8702504.
R. Lu and M. P. Flynn, A 300MHz-BW 38mW 37dB/40dB SNDR/DR Frequency-Interleaving Continuous-Time Bandpass Delta-Sigma ADC in 28nm CMOS, In 2021 Symposium on VLSI Circuits (2021) pp. 1–2, https://doi.org/10. 23919/VLSICircuits52068.2021.9492383.
M. Bolatkale, et al., A 4GHz CT ΔΣ ADC with 70dB DR and 74dBFS THD in 125MHz BW, In 2011 IEEE International Solid-State Circuits Conference (2011) pp. 470–472, https://doi.org/10.1109/ISSCC.2011.5746401.
B. P. Ginsburg and A. P. Chandrakasan, Highly Interleaved 5b 250MS/s ADC with Redundant Channels in 65nm CMOS, In 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers (2008) pp. 240–610, https://doi.org/10.1109/ISSCC.2008.4523146.
L. Kull, et al., A 10-Bit 20–40 GS/S ADC with 37 dB SNDR at 40 GHz Input Using First Order Sampling Bandwidth Calibration,
In 2018 IEEE Symposium on VLSI Circuits (2018) pp. 275–276, https://doi.org/10.1109/VLSIC.2018.8502268.
Z. Zheng, et al., 16.3 A Single-Channel 5.5mW 3.3GS/s 6b Fully Dynamic Pipelined ADC with Post-Amplification Residue Generation (2020) pp. 254–256, https://doi.org/10.1109/ISSCC19947.2020.9062895.
B. Murmann, ADC Performance Survey 1997-2021 (2021), URL http://web.stanford.edu/~murmann/adcsurvey.html, Last accessed 15 July 2022.
Y.-Z. Lin, et al., 20.2 A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation
in 14nm FinFET, In 2019 IEEE International Solid- State Circuits Conference - (ISSCC) (2019) pp. 330–332, https://doi.org/10.1109/ISSCC.2019.8662299.
G. M. Salgado, D. O’Hare, and I. O’Connell, Recent Advances and Trends in Noise Shaping SAR ADCs, IEEE Transactions on Circuits and Systems II: Express Briefs 68 (2021) 545, https://doi.org/10.1109/TCSII.2020.3046170
L. Jie, et al., An Overview of Noise-Shaping SAR ADC: From Fundamentals to the Frontier, IEEE Open Journal of the Solid-State Circuits Society 1 (2021) 149, https://doi.org/10.1109/OJSSCS.2021.3119910
Z. Chen, M. Miyahara, and A. Matsuzawa, A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC, In 2015 Symposium on VLSI Circuits (VLSI Circuits) (2015) pp. C64–C65, https://doi.org/10.1109/VLSIC.2015.7231329.
P. Yi, et al., A Unity-Gain Buffer Assisted Noise-Shaping SAR ADC Based on Error-Feedback Structure, Chinese Journal of Electronics 31 (2022) 658, https://doi.org/10.1049/cje.2020.00.286
P. Yi, et al., A 625kHz-BW, 79.3dB-SNDR Second-Order Noise-Shaping SAR ADC Using High-Efficiency Error-Feedback Structure, IEEE Transactions on Circuits and Systems II: Express Briefs 69 (2022) 859, https://doi.org/10.1109/TCSII.2021.3121245
S. Li, et al., A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure, IEEE Journal of Solid-State Circuits 53 (2018) 3484, https://doi.org/10.1109/JSSC.2018.2871081
H. Li, et al., A 7.3-μW13-ENOB 98-dB SFDR Noise-Shaping SAR ADC With Duty-Cycled Amplifier and Mismatch Error Shaping, IEEE Journal of Solid-State Circuits 57 (2022) 2078, https://doi.org/10.1109/JSSC.2022.3168588
J. Fredenburg and M. Flynn, A 90MS/s 11MHz bandwidth 62dB SNDR noise-shaping SAR ADC, In 2012 IEEE International Solid-State Circuits Conference (2012) pp. 468–470, https://doi.org/10.1109/ISSCC.2012.6177094.
S. Li, et al., Noise-Shaping SAR ADCs, pp. 21–40 (2020), https://doi.org/10.1007/978-3-030-25267-0_2.
H. Garvik, C. Wulff, and T. Ytterdal, An 11.0 bit ENOB, 9.8 fJ/conv.-step noise-shaping SAR ADC calibrated by least squares estimation, In 2017 IEEE Custom Integrated Circuits Conference (CICC) (2017) pp. 1–4, https://doi.org/10.1109/CICC.2017.7993659.
X. Tang, et al., A 13.5-ENOB, 107-μ W Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier, IEEE Journal of Solid-State Circuits 55 (2020) 3248, https://doi.org/10.1109/JSSC.2020.3020194
J. Liu, et al., 27.1 A 250kHz-BW 93dB-SNDR 4th-Order Noise-Shaping SAR Using Capacitor Stacking and Dynamic Buffering, In 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64 (2021) pp. 369–371, https://doi.org/10.1109/ISSCC42613.2021.9366008.
W. Wang, et al., A passive second-order noise-shaping SAR ADC architecture with increased freedom in NTF synthesis and relaxed clock-jitter issue, Electronics Letters 58 (2022) 530
Y.-S. Shu, L.-T. Kuo, and T.-Y. Lo, An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS, IEEE Journal of Solid-State Circuits 51 (2016) 2928, 10.1109/JSSC.2016.2592623
K. Obata, et al., A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noiseshaping SAR ADC with dynamic element matching and modulation
dither effect, In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits) (2016) pp. 1–2, https://doi.org/10.1109/VLSIC.2016.7573463.
Y. Zhang, et al., A 2nd-Order Noise-Shaping SAR ADC With Lossless Dynamic Amplifier Assisted Integrator, IEEE Transactions on Circuits and Systems II: Express Briefs 67 (2020) 1819, https://doi.org/10.1109/TCSII.2019.2957727
J. Liu, et al., 9.3 A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping, In 2020 IEEE International Solid- State Circuits Conference - (ISSCC) (2020) pp. 158–160, https://doi.org/10.1109/ISSCC19947.2020.9063159.
H. Zhuang, et al., A Second-Order Noise-Shaping SAR ADC With Passive Integrator and Tri-Level Voting, IEEE Journal of Solid-State Circuits 54 (2019) 1636, https://doi.org/10.1109/JSSC.2019.2900150
T. Kim and Y. Chae, A 2MHz BW Buffer-Embedded Noise-Shaping SAR ADC Achieving 73.8dB SNDR and 87.3dB SFDR, In 2019 IEEE Custom Integrated Circuits Conference (CICC) (2019) pp. 1–4, https://doi.org/10.1109/CICC.2019.8780230.
B. Hernes, et al., A 92.5mW 205MS/s 10b Pipeline IF ADC Implemented in 1.2V/3.3V 0.13( μm CMOS, In 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (2007) pp. 462–615, https://doi.org/10.1109/ISSCC.2007.373494.
Q. Zhang, et al., A Second-Order Noise-Shaping SAR ADC Using Two Passive Integrators Separated by the Comparator, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29 (2021) 227, https://doi.org/10.1109/TVLSI.2020.3033415
W. Guo, H. Zhuang, and N. Sun, A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators, In 2017 Symposium on VLSI Circuits (2017) pp. C236–C237, https://10.23919/VLSIC.2017.8008492.
Y. Lim and M. P. Flynn, 26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC, In 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers (2015) pp. 1–3, https://doi.org/10.1109/ISSCC.2015.
L. Jie, et al., 9.4 A 4th-Order Cascaded-Noise-Shaping SAR ADC with 88dB SNDR Over 100kHz Bandwidth, In 2020 IEEE International Solid- State Circuits Conference - (ISSCC) (2020) pp. 160–162, https://doi.org/10.1109/ISSCC19947.2020.9062905.
T.-H. Wang, et al., 27.3 A 13.8-ENOB 0.4pF-CIN 3rd-Order Noise-Shaping SAR in a Single-Amplifier EF-CIFF Structure with Fully Dynamic Hardware-Reusing kT/C Noise Cancelation, In 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64 (2021) pp. 374–376, https://doi.org/10.1109/ISSCC42613.2021.9365990.
Q. Zhang, et al., A 13-Bit ENOB Third-Order Noise-Shaping SAR ADC Employing Hybrid Error Control Structure and LMS-Based Foreground Digital Calibration, IEEE Journal of Solid-State Circuits 57 (2022) 2181, https://doi.org/10.1109/JSSC.2021.3137540
T. Wang, et al., An 84dB-SNDR Low-OSR 4th-Order Noise-Shaping SAR with an FIA-Assisted EF-CRFF Structure and
Noise-Mitigated Push-Pull Buffer-in-Loop Technique, In 2022 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 65 (2022) pp. 418–420, https://doi.org/10.1109/ISSCC42614.2022.9731771.
X. Fu and K. El-Sankary, A 14.5-Bit ENOB, 10MS/s SAR ADC With 2nd Order Hybrid Passive-Active Resonator Noise
Shaping, IEEE Access 10 (2022) 54589, https://doi.org/10.1109/ACCESS.2022.3176359
G. M. Salgado, D. O’Hare, and I. O’Connell, Modeling and Analysis of Error Feedback Noise-Shaping SAR ADCs, In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020) pp. 1–5, https://doi.org/10.1109/ISCAS45731.2020.9180995.
Z. Jiao, et al., A Configurable Noise-Shaping Band-Pass SAR ADC With Two-Stage Clock-Controlled Amplifier, IEEE Transactions on Circuits and Systems I: Regular Papers 67 (2020) 3728, https://doi.org/10.1109/TCSI.2020.3012998
J. A. McNeill, et al., All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture,
IEEE Transactions on Circuits and Systems I: Regular Papers 58 (2011) 2355, https://doi.org/10.1109/TCSI.2011.2123590
C. Yang, et al., A 98.6 dB SNDR SAR ADC With a Mismatch Error Shaping Technique ImplementedWith Double Sampling, IEEE Transactions on Circuits and Systems II: Express Briefs 69 (2022) 774, https://doi.org/10.1109/TCSII.2021.3112501
H. Li, et al., An 80dB-SNDR 98dB-SFDR Noise-Shaping SAR ADC with Duty-Cycled Amplifier and Digital-Predicted Mismatch Error Shaping, In ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC) (2021) pp. 387– 390, https://doi.org/10.1109/ESSCIRC53450.2021.9567748.
J. Liu, et al., Error-Feedback Mismatch Error Shaping for High-Resolution Data Converters, IEEE Transactions on Circuits and Systems I: Regular Papers 66 (2019) 1342, https://doi.org/10.1109/TCSI.2018.2879582
Y. Shen, et al., A 103-dB SFDR Calibration-Free Oversampled SAR ADC With Mismatch Error Shaping and Pre-Comparison Techniques, IEEE Journal of Solid-State Circuits 57 (2022) 734, https://doi.org/10.1109/JSSC.2021.3135559
C.-C. Liu and M.-C. Huang, 28.1 A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic amplifier-based FIR-IIR filter, In 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017) pp. 466–467, https://doi.org/10.1109/ISSCC.2017.7870463.
Q. Zhang, et al., A second-order noise-shaping SAR ADC with error-feedback structure and data weighted averaging, Microelectronics
Journal 105 (2020) 104905, https://doi.org/10.1016/j.mejo.2020.104905
M. Neitola and T. Rahkonen, A Generalized Data-Weighted Averaging Algorithm, IEEE Transactions on Circuits and Systems II: Express Briefs 57 (2010) 115, https://doi.org/10.1109/TCSII.2010.2040313
L. Baltierra, Analísis y diseño de un sistema de corrección dinámica híbrida para un modulador sigma delta multi-bit pasa-banda, Master’s thesis, Universidad Autónoma de Baja California (2018), URL https://repositorioinstitucional.uabc.mx/handle/20.500.12930/2144.
K. Hasebe, et al., A 100kHz-Bandwidth 98.3dB-SNDR Noise-Shaping SAR ADC with Improved Mismatch Error Shaping and Speed-Up Techniques, In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2022) pp. 56–57, https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830166.
L. Jie, et al., A Cascaded Noise-Shaping SAR Architecture for Robust Order Extension, IEEE Journal of Solid-State Circuits 55 (2020) 3236, https://doi.org/10.1109/JSSC.2020.3019487
M. Miyahara and A. Matsuzawa, An 84 dB dynamic range 62.5–625 kHz bandwidth clock-scalable noise-shaping SAR ADC with open-loop integrator using dynamic amplifier, In 2017 IEEE Custom Integrated Circuits Conference (CICC) (2017) pp. 1–4, https://doi.org/10.1109/CICC.2017.7993655.
J. Chen and Y. P. Xu, A novel noise-shaping DAC for multi-bit sigma-delta modulator, IEEE Transactions on Circuits and Systems II: Express Briefs 53 (2006) 344, https://doi.org/10.1109/TCSII.2006.869920
Y. Guo, et al., A 60-MS/s 5-MHz BW Noise-Shaping SAR ADC With Integrated Input Buffer Achieving 84.2-dB SNDR and 97.3-dB SFDR Using Dynamic Level-Shifting and ISI-Error Correction, IEEE Journal of Solid-State Circuits (2022) 1, https://doi.org/10.1109/JSSC.2022.3185501
R. Kapusta, H. Zhu, and C. Lyden, Sampling Circuits That Break the kT/C Thermal Noise Limit, IEEE Journal of Solid-State Circuits 49 (2014) 1694, https://doi.org/10.1109/JSSC.2014.2320465
T. Cho and P. Gray, A 10 b, 20 Msample/s, 35 mW pipeline A/D converter, IEEE Journal of Solid-State Circuits 30 (1995) 166, https://doi.org/10.1109/4.364429
A. Abo and P. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter, IEEE Journal of Solid-State Circuits 34 (1999) 599, https://doi.org/10.1109/4.760369
S. Mihai and v. T. Ed, Chopping: a technique for noise and offset reduction, pp. 101–126 (Springer US, Boston, MA, 2002), 10.1007/0-306-48140-5_5, URL https://doi.org/10.1007/0-306-48140-5_5.
M. Akbari, et al., OTA-Free MASH 2–2 Noise Shaping SAR ADC: System and Design Considerations, In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020) pp. 1–5, https://doi.org/10.1109/ISCAS45731.2020.9180832.
L. Jie, B. Zheng, and M. P. Flynn, 20.3 A 50MHz-Bandwidth 70.4dB-SNDR Calibration-Free Time-Interleaved 4th-Order Noise-Shaping SAR ADC, In 2019 IEEE International Solid- State Circuits Conference - (ISSCC) (2019) pp.332–334, https://doi.org/10.1109/ISSCC.2019.8662313.
J. Liu, et al., A 0.029-mm2 17-fJ/Conversion-Step Third-Order CT ΔΣ ADC With a Single OTA and Second-Order Noise-Shaping SAR Quantizer, IEEE Journal of Solid-State Circuits 54 (2019) 428, https://doi.org/10.1109/JSSC.2018.2879955
Y.-S. Lin, S.-J. Chang, and C.-L. Wei, A Noise-shaping SAR Assisted MASH 2-1 Sigma-Delta Modulator, In 2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT) (2020) pp. 1–4, https://doi.org/10.1109/VLSI-DAT49148.2020.9196468.
S. Oh, et al., A 80dB DR 6MHz Bandwidth Pipelined Noise-Shaping SAR ADC with 1–2 MASH structure, In 2020 IEEE Custom Integrated Circuits Conference (CICC) (2020) pp. 1–4, https://doi.org/10.1109/CICC48029.2020.9075929.
B. Gao, et al., Active Noise Shaping SAR ADC Based onISDM with the 5MHz Bandwidth, In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020) pp. 1–4, https://doi.org/10.1109/ISCAS45731.2020.9180950.
V. Bajaj, et al., Noise Shaping Techniques for SNR Enhancement in SAR Analog to Digital Converters, In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020) pp. 1–5, https://doi.org/10.1109/ISCAS45731.2020.9180536.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 David Rivera Orozco, Luis Ilich Vladimir Guerrero Linares, Gerardo Molina Salgado, Federico Sandoval Ibarra
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.