Calibrating density functionals with DMol3 applied on lithium oxide battery

Authors

  • J. H. Pacheco Sanchez TecNM / Instituto Tecnológico de Toluca
  • A. Vera García TecNM / Instituto Tecnologico de Toluca
  • L. A. Desales Guzmán TecNM / Instituto Tecnologico de Toluca
  • I.-P. Zaragoza TecNM / Instituto Tecnologico de Tlalnepantla

DOI:

https://doi.org/10.31349/RevMexFis.71.010402

Keywords:

DFT functionals; potential energy curves; battery ion lithium-oxigen; beta-carbyne

Abstract

Density functional theory - based methods constitute part of the computational techniques considered for finding energy, temperature, pressure, density, electronic structure, and more, of materials and other systems. There is not a general density functional for solving either one or another system, rather there are approximations to the exchange-correlation functional designed to apply this theory, and the density functional for the system in study is usually selected through the Jacob’s Ladder. The purpose of this article is to calibrate by means of selecting multiple density functionals, for calculating potential energy curves on a specific system, and comparing these results with literature values to determine the most suitable functional. With this theory, when a calculation becomes cyclical means that it does not converge after thousands of steps or iterations. The use of thermal smearing calculations can achieve the convergence of the molecular systems. The density functional is calibrated at insignificant thermal smearing values (around 0.005 Hartrees), because the calculated minimum energy is still consistent against experimental values. This level of theory allows searching for stable reaction products. Among the interactions developed to find a suitable density functional are Li + O, Li + O2, Li + CO, 2 LiO + C38H8.  We select GGA-PBE-Grimme as the most suitable density functional. The resulting information is for applying it to infer about charge/discharge of a rechargeable battery, according to the porosity of the cathode.

References

V.A. Basiuk, Electron smearing in DFT calculations: a case study of doxorubicin interaction with single-walled carbon nanotubes. Int J Quantum Chem 111 (2011) 4197-4205

D. Hernández-Benitez, J. H. Pacheco-Sánchez, Optimization of Chitosan+Activated Carbon Nanocomposite. DFT Study 3 (2018) 436, https://dx.doi.org/10.32474/AOICS.2018.03.000175

V. A. Basiuk, O. V. Prezhdo, E. V. Basiuk, Thermal smearing in DFT calculations: How small is really small? A case of La and Lu atoms adsorbed on graphene, Materials Today Communications 25 (2020) 101595, https://dx.doi.org/10.1016/j.mtcomm.2020.101595

J. Jagiello, A. Anson, and M.T. Martínez, J. Phys. Chem. B 110 (2006) 4531

H. Tanahashi, J. Appl. Electrochem. 35 (2005) 1067

L.A. García, I.P. Zaragoza, J.H. Pacheco, A. Bravo, J.L. Contreras, J. Salmones, and G. Arriaga, Study of activated carbons from different source, used to storage hydrogen as energy vector, presented at the 14th International Symposium on Metastable and Nano Materials, Corfu, Greece, 2007

A. Allwar, Bin Md Noor and A. Bin Mohd Nawi, Journal of Physical Science 19 (2032) 93

D. Lozano-Castelló, D. Cazorla-Amorós, and A. Linares-Solano, Energy & Fuels 16 (2002) 1321

U. Pau. Taylor Peter, Bolton Ronan, Stone Dave, Zhang XiaoPing, Martin Chris, Pathways for Energy Storage in the UK Pathways for energy storage in the UK, (2012)

M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4269

M. Gil-Austi, L. Zubizarreta-Saenz De Zaitegui, V. FusterRoig, and A. Quijano- López, Batteries of the future: challenges and projection, Dyna, 92 (2017) 601-605

Z. Zhang et al., The First Introduction of Graphene to Rechargeable Li - CO2 Batteries **, Angewandte Chemie International Edition, 127 (2015) 6550, https://dx.doi.org/10.1002/anie.201501214

B. Kumar et al., A Solid-State, Rechargeable, Long Cycle Life Lithium -Air Battery, Journal of The Electrochemical Society, 157 (2010) 50, https://dx.doi.org/10.1149/1.3256129

I. Temprano et al., Toward Reversible and MoistureTolerant Aprotic Lithium-Air Batteries Toward Reversible and Moisture-Tolerant Aprotic Lithium-Air Batteries, Joule, 4 (2020) 2501, https://dx.doi.org/10.1016/j.joule.2020.09.021

B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 532, https://dx.doi.org/10.1063/1.458452

BIOVIA Materials Studio (2017) Springer, New York, USA. (DS BIOVIA. Dassault Systemes BIOVIA. Retrieved 24 January 2017)

D. Fairén-Jiménez, Claves de la simulación molecular para el estudio de procesos de adsorción en estructuras metal-organicas, An. Quím. 106 (2010) 183-190

Kohn, W. v-Representability and density functional theory. Phys. Rev. Lett. 51 (1983) 1596-1598

Kohn, W. Density-functional theory for excited states in quasilocal density approximation. Phys. Rev. A. 34 (1986) 737-741

Kohn, W., and Sham Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133- A1138

Kohn, W. and Vashishta, P. General density functional theory. In Theory of inhomogeneous Electron Gas. (Lundqvist, S. and March, NH, eds. Plenum, NY, 1983)

M. Yoshimine Accurate potential curves and properties for X 2Π and A 2P+ states of LiO* J. Chem. Phys. 57 (1972) 1132, https://dx.doi.org/10.1063/1.1678366

L. Brewer, G. M. Rosenblatt, Advan. High Temp. Chem. 2 (1969) 1

A. P. Nefedov, B. V. Rogov, V. A. Sinel’shchikov, and M. A. Khomkin, Investigation of Distribution of Lithium Atoms in the Boundary Layer of the Flow of Combustion Products High Temperature, 38 (2000) 742, https://dx.doi.org/10.1007/BF02755927

J. M. C. Plane, B. Rajasekhar, and L. Bartolotti, Kinetic study of the reaction potassium + oxygen + M (M = nitrogen, helium) from 250 to 1103 K J. Phys. Chem., 94 (1990) 4161

G. J. Dougherty, M. J. McEwan, L. F. Phillips, Some photometric observations of trace additives in dry carbon monoxide flames Combust. Flame 21 1973 253

M. H. Alexander, Semiempirical potential surfaces and dynamical considerations for collisions between alkali metals and molecular oxygen: Li + O2 and Na + O2 a) J. Chem. Phys. 69 (1978) 3502, https://dx.doi.org/10.1063/1.437055

M. Steinberg, K. Schofield, The High-Temperature Chemistry and Thermodynamics of Alkali Metals (Lithium, Sodium and Potassium) in Oxygen Rich Flames. Preprint; Western Section, The Combustion Institute, November 1987

J. M. C. Plane, B. Rajasekhar, L. Bartolotti, Theoretical and Experimental Determination of the Lithium and Sodium Superoxide Bond Dissociation Energies, J. Phys. Chem. 93 (1989) 3141, https://dx.doi.org/10.1021/j100345a052

W. D. Allen, D. A. Horner, R. DeKock, R. B. Remington, H. F. Schaefer, The Lithium Superoxide Radical: Symmetry Breaking Phenomena and Potential Energy Surfaces. Submitted for publication in Chem. Phys

R.H. Lamoreaux, and D.L. Hildenbrand, High Temperature Vaporization Behavior of Oxides. I. Alkali Metal Binary Oxides. J. Phys. Chem. Ref Data, 13 (1984) 151-173

X. Wang, L. Andrews, Infrared spectra, structure and bonding in the LiO2, LiO2Li, and Li2O molecules in solid neon Molecular Physics: An International Journal at the Interface between Chemistry and Physics, 107 (2009) 739, https://dx.doi.org/10.1320/00268973202526583

O. Ayed, A. Loutellier, L. Manceron, and J. P. Perchard Interaction between Lithium and Carbon Monoxide. 1. A Matrix Infrared Study. J. Am. Chem. Soc. 132 (1986) 8138

J. N. Dawoud, Interaction energies and structures of the Li+(CO)n (n=1-3) complexes. J. Chem. Sci. 129 (2017) 543, https://dx.doi.org/10.1007/s12039-017-1275-5

X Kim BG, Choi HJ. Graphyne: Hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B. 86 (2012) 115435

D.H. Everett, Basic Principles of Colloid Science. Royal Society of Chemistry, (London 1988)

IUPAC commission on Colloid and Surface Chemistry Including Catalysis, Pure Appl. Chem. 57 (1985) 603

J.H. Pacheco-Sánchez, IP Zaragoza-Rivera, A Bravo-Ortega, Interaction of small carbon molecules and zinc dichloride: DFT study, Rev. Mex. Fís., 63 (2017) 97-110, https://repositorio.unam.mx/contenidos/4107435

M. Wilson, Extended ionic models from ab initio calculations, Phil. Trans. R. Soc. London A 358 (2000) 399-418

A. I. Boldyrev, J. Simons, Paul von FL Schleyer Ab initio study of the electronic structures of lithium containing diatomic molecules and ions. The Journal of Chemical Physics 99 (1993) 8793, https://dx.doi.org/10.1063/1.465600

J. N. Allison, R. J. Cave, W. A. Goddard III Alkali Oxides. Analysis of Bonding and Explanation of the Reversal in Ordering of the 2fl and 22+States. J. Phys. Chem. 88 (1984) 1262, https://dx.doi.org/10.1021/j150650a049

V. Bonačić Koutecky, J. Gaus, M.F. Guest, L. Čeśpiva and J. Koutecky, Ab initio CI study of the electronic structure and geometry of neutral and cationic hydrogenated lithium clusters. Predictions and interpretation of measured properties. Chem. Phys. Lett. 206 (1993) 528-539

K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure Vol. 4 constants of diatomic molecules. Van Nostrand Reinhold C. NY 1979

C.-L. Fu and K.-M. Ho First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo. Phys. Rev. B 28 (1983) 5480-5486

M. C. Michelini, R. Pis Diez, A. H. Jubert A density functional study of small Nickel clusters. Inter. J. Quant. Chem., 70 (1998) 693-701

A. Migliore, P. H.-L. SIt, and M. L. Klein, Evaluation of Electronic Coupling in Transition-Metal Systems Using DFT: Application to the Hexa-Aquo Ferric-Ferrous Redox Couple. J. Chem. Theory Comput. 5 (2009) 307, https://dx.doi.org/10.1021/ct800340v

J. B. Haskins, Ch. W. Bauschlicher Jr., and J. W. Lawson, Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability. J. Phys. Chem. B 119 (2015) 14705, https://doi.org/10.1021/acs.jpcb.5b06951

E. Crabb, A. France-Lanord, G. Leverick, R. Stephens, Y. Shao-Horn, J.C. Grossman* Importance of Equilibration Method and Sampling for Ab Initio Molecular Dynamics Simulations of Solvent-Lithium-Salt Systems in Lithium-Oxygen Batteries. J. Chem. Theory Comput. 5 (2009) 307, https://dx.doi.org/10.1021/acs.jctc.0c03233

Downloads

Published

2025-01-01

How to Cite

[1]
J. H. Pacheco-Sánchez, A. Vera García, L. A. Desales Guzmán, and I.-P. Zaragoza, “Calibrating density functionals with DMol3 applied on lithium oxide battery”, Rev. Mex. Fís., vol. 71, no. 1 Jan-Feb, pp. 010402 1–, Jan. 2025.

Issue

Section

04 Atomic and Molecular Physics