Raman and FTIR spectroscopy experimental and theoretical in magnetic nanoemulsion from Carapa Guianensis Aublet


  • L.G.F. Silva Universidade de Brasilia
  • Q.S. Martins Universidade Federal de Rondônia
  • A. Ribas Universidade Federal de Rondônia
  • D.L.L. Oliveira Universidade Federal de Rondônia
  • R.C.S. Lima Universidade Federal de Rondônia
  • J.G. Santos Universidade Federal de Rondônia




Nanoemulsion; amazonian oil; vibrational spectroscopy; density functional theory method


This work brings Raman and Fourier transform infrared (FTIR) spectroscopy as a proposal for a vibrational characterization of Carapa Guianensis Aublet essential oil in natura and polymerized and of magnetic nanoemulsion. Calculation of computational chemistry based on the method density functional theory with B3LYP functional and 6-311+G(d,p) base set parameters was used to obtain theoretical frequencies and vibrational signatures of the oleic acid molecule. Results of Raman and Fourier transform infrared spectroscopy confirm bands of Carapa Guianensis Aublet essential oil present in polymerized oil and magnetic nanoemulsion studied. The density functional theory method shows that the bands 1099 cm-1, 1714 cm-1 and 1812 cm-1 explain the presence of vibrational modes of oleic acid in the samples. The density functional theory brought good conformation to the chosen molecule.


C.A. Martin et al., Omega-3 and omega-6 polyunsaturated fatty acids: importance and occurrence in foods, Rev. Nutr. 19 (2006) 761, https://doi.org/10.1590/S1415-52732006000600011

Q. Shu-Hua, W. Da-Gang, M. Yun-Bao and L. Xiao-Dong, A Novel Flavane from Carapa guianensis J Integr Plant Biol., 9 (2003) 1129, https://www.jipb.net/EN/Y2003/V45/I9/1129

C.A. Klimas, K.A. Kainer and L.H.O. Wadt, Population structure of Carapa guianensis in two forest types in the southwestern Brazilian Amazon, For. Ecol. Manage., 3 (2007) 256, https://doi.org/10.1016/j.foreco.2007.05.025

M.R.A. Ferreira et al., Development and Evaluation of Emulsions from Carapa guianensis (Andiroba) Oil. AAPS PharmSciTech, 11 (2010) 1383, https://doi.org/10.1208/s12249-010-9491-z

K.K. Barros Dias et al., Biological activities from andiroba (Carapa guianensis Aublet.) and its biotechnological applications: A systematic review, Arab. J. Chem., 4 (2023) 104629, https://doi.org/10.1016/j.arabjc.2023.104629

S. Gordon I et al., Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial, Am. J. Clin. Nutr. 9 (2011) 402, https://doi.org/10.3945/ajcn.110.005611

S. Gavanji, B. Larki, and A. Hosein, A review of Application of Ostrich oil in Pharmacy and Diseases treatment, J. Nov. Appl. Sci., 18 (2013) 650, https://jnasci.org/2013-2-11/

H. Ali, H. Nawaz, M. Saleem, F. Nurjis, and M. Ahmed, Qualitative analysis of desi ghee, edible oils, and spreads using Raman spectroscopy, J. Raman Spectrosc., 47 (2016) 706, https://doi.org/10.1002/jrs.4891

W. Dong, Y. Zhang, B. Zhang, and X. Wang, Rapid prediction of fatty acid composition of vegetable oil by Raman spectroscopy coupled with least squares support vector machines, J. Raman Spectrosc, 44 (2013) 1739, https://doi.org/10.1002/jrs.4386

V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, Detection of Virgin Olive Oil Adulteration by Fourier Transform Raman Spectroscopy, Agric. Food Chem. 44 (1996) 2225, https://doi.org/10.1021/jf9600115

G. Ledet, S. Pamujula, V. Walker, S. Simon, R. Graves, and T.K. Mandal, Development and in vitro evaluation of a nanoemulsion for transcutaneous delivery, Drug Dev. Ind. Pharm., 40 (2014) 370, https://doi.org/10.3109/03639045.2012.763137

R.K. Harwansh, K.C. Patra, S.K. Pareta, J. Singh, and M.A. Rahman, Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin, Braz. J. Pharm. Sci., 47 (2011) 769, https://doi.org/10.1590/S1984-82502011000400014

A.M. Cardoso et al., Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Mater. Sci. Eng., 96 (2019) 205, https://doi.org/10.1016/j.msec.2018.11.013

L.A. Huber et al., Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and iontophoresis, J. Biomed. Nanotechnol, 11 (2015) 1975, https://doi.org/10.1166/jbn.2015.2139

F. Bruxel et al., Nanoemulsions as parenteral drug delivery systems, Quim. Nova, 35 (2012) 1827, https://doi.org/10.1590/S0100-40422012000900023

T.W. Prow et al., Nanoparticles and microparticles for skin drug delivery, Adv. Drug Deliv. Rev., 63 (2011) 470, https://doi.org/10.1016/j.addr.2011.01.012

S.R. Mudshinge, A.B. Deore, S. Patil, and C.M. Bhalgat, Nanoparticles: Emerging carriers for drug delivery, Saudi Pharm. J., 19 (2011) 129, https://doi.org/10.1016/j.jsps.2011.04.001

M. Arruebo, R. Fernández-Pacheco, M. Ibarra, and J. Santamaría, Magnetic nanoparticles Controlled release of drugs from nanostructured functional materials, Rev. - Lit. Arts Am., 2 (2007) 22, https://linkinghub.elsevier.com/retrieve/pii/S1748013207700841

T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerensa, J.P. Remon, and C. Vervaet, Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes, Int. J. Pharm. 30 (2011) 32, doi: https://doi.org/10.1016/j.ijpharm.2010.12.012

C.B. Silva, J.G. da Silva Filho, G.S. Pinheiro, A.M.R. Teixeira, and P.T.C. Freire, Vibrational and structural properties of L-Alanyl-L-Phenylalanine dipeptide by Raman spectroscopy, infrared and DFT calculations, Vib. Spectrosc. 98 (2018) 128, https://doi.org/10.1016/j.vibspec.2018.08.001

A. Abkari, I. Chaabane, and K. Guidara, DFT (B3LYP/LanL2DZ and B3LYP/6311G+(d,p)) comparative vibrational spectroscopic analysis of organic-inorganic compound bis(4-acetylanilinium) tetrachlorocuprate(II), Physica E, 81 (2016) 136, https://dx.doi.org/10.1016/j.physe.2016.03.010

V. Baeten, Raman spectroscopy in lipid analysis, Lipid Technol., 22 (2010) 36, https://doi.org/10.1002/lite.200900082

Q. S. Martins, L. M. S. Santos, and J. L. B. Faria, Raman spectra and ab-initio calculations in Bertholletia excelsa oil, Vib. Spectrosc. 106 (2020) 102986, https://doi.org/10.1016/j.vibspec.2019.102986

K.M. Melo, L.F. Oliveira, R.M. Rocha, and M.A. Pantoja, Andiroba oil and nanoemulsion (Carapa Guianensis Aubl.) reduce lesion severity caused by the antineoplastic agent doxorubicin in mice, Biomed. Pharmacother., 138 (2021) 111505, https://doi.org/10.1016/j.biopha.2021.111505

H. Lam, P.K. Roy, and S. Chattopadhyay, Thermal degradation in edible oils by surface enhanced Raman spectroscopy calibrated with iodine values, Vib. Spectrosc., 106 (2020) 103018, https://doi.org/10.1016/j.vibspec.2019.103018

P. Jayaraj, and R. Desikan, Synthesis, crystal structure, and DFT calculations of 2H-1,3-benzodioxol-5-yl 3-(4-hydroxy3-methoxyphenyl) prop-2-enoate, Chem. Data Collect. 29 (2020) 100518, https://doi.org/10.1016/j.cdc.2020.100518

V.V. Kuzmin, V.S. Novikov, L.Yu. Ustynyuk, K.A. Prokhorov, E.A. Sagitova, and G.Yu. Nikolaeva, Raman spectra of polyethylene glycols: Comparative experimental and DFT study, J. Mol. Struct., 1217 (2020) 128331, https://doi.org/10.1016/j.molstruc.2020.128331

S. Miao, P. Wang, Z. Su, and S. Zhang, Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater., 10 (2014) 1692, https://doi.org/10.1016/j.actbio.2013.08.040

F.S Güner, Y. Yagcı, and A.T. Erciyes, Polymers from triglyceride oils, Prog. Polym. Sci., 31 (2006) 633, https://doi.org/10.1016/j.progpolymsci.2006.07.001

V. Sharma, and P.P. Kundu, Condensation polymers from natural oils, Prog. Polym. Sci., 33 (2008) 1199, https://doi.org/10.1016/j.progpolymsci.2008.07.004

L.G. Silva, T.A. Beleza, J.G. Santos, and L.B. Silveira, A Hybrid Nanocomposite from γ-Fe2O3 Nanoparticles Functionalized in the Amazon Oil Polymers matrix, Int. J. Innov. Rduc. Res., 8 (2020) 418, https://doi.org/10.31686/ijier.vol8.iss6.2435

A.B. Chin, and I. Yaacob, Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure, J. Mater. Process. Technol., 191 (2007) 235, https://doi.org/10.1016/j.jmatprotec.2007.03.011

S. Laurent et al., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications, Chem. Rev., 108 (2008) 2064, https://doi.org/10.1021/cr068445e.

N. Abu-Khalaf and M. Hmidat, Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality, Comput. Electron. Agric., 173 (2020) 105445, https://doi.org/10.1016/j.compag.2020.105445

V.K. Redasani et al., A review on derivative uvspectrophotometry analysis of drugs in pharmaceutical formulations and biological samples review, J. Chil. Chem., 63 (2018) 4126, https://doi.org/10.4067/s0717-97072018000304126

M.J. Frisch et al., Gaussian 09 (2009)

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648, https://doi.org/10.1063/1.464913

C. Lee, W. Yang, and R. G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 98 (1988) 785, https://doi.org/10.1103/PhysRevB.37.785

X. Wu, S. Gao, J. S. Wang, H. Wang, Y. W. Huanga, and Y. Zhaod, The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation, Anlst., 137 (2012) 4226, https://doi.org/10.1039/C2AN35378D

M.H. Jamroz, Vibrational Energy Distribution Analysis ´ (VEDA): Scopes and limitations, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114 (2013) 220, https://doi.org/10.1016/j.saa.2013.05.096

G.A. Senhorini, S.F. Zawadzki, P.V. Farago, S.M.W. Zanin, and F.A. Marques, Microparticles of poly(hydroxybutyrate-cohydroxyvalerate) loaded with andiroba oil: Preparation and characterization, Mater. Sci. Eng. C, 5 (2012) 1121, https://doi.org/10.1016/j.msec.2012.02.027

Q.S. Martins, C.A. Aguirre, and J. Farias, Approach by Raman and infrared spectroscopy in three vegetable oils from the Brazilian Amazon, Rev. Mex. Fis, 4 (2019) 328, https://doi.org/10.31349/RevMexFis.65.328

D.F. Silva et al., PCL/Andiroba Oil (Carapa guianensis Aubl.) Hybrid Film for Wound Healing Applications, Polymer. 10 (2021) 1591, https://doi.org/10.3390/polym13101591

F.B. de Santana, S.J. Mazivila, L.C. Gontijo, W.B. Neto, and R.J. Poppi, Rapid Discrimination Between Authentic and Adulterated Andiroba Oil Using FTIR-HATR Spectroscopy and Random Forest, Food Anal. Methods 11 (2018) 1927, https://doi.org/10.1007/s12161-017-1142-5

NIST Standard Reference Database SRD Number 69. Last update to data: (2022) DOI: https://doi.org/10.18434/T4D303

L.G.F. Silva, H. P. Pacheco, Q. S. Martins, J. G. Santos, and L. B. Silveira, Development of magneto-polymer nanoemulsions based on the amazon oil of carapa guianensis aubl, Int. J. Dev. Res. 12 (2022) 2573, https://doi.org/10.37118/ijdr.25736.11.2022

F. Huang et al., Identification of waste cooking oil and vegetable oil via Raman spectroscopy, J. Raman Spectrosc. 47 (2016) 860, https://doi.org/10.1002/jrs.4895

W. Rumińska, M. Szymańska-Chargot, D. Wiacek, A. Sobota, K.H. Markiewicz, and A. Nawrocka, FT-Raman and FTIR studies of the gluten structure as a result of model dough supplementation with chosen oil pomaces, J. Cereal Sci. 93 (2020) 102961, https://doi.org/10.1016/j.jcs.2020.102961

R. Hu, T. He, Z. Zhang, Y. Yang, and M. Liu, Safety analysis of edible oil products via Raman spectroscopy, Talanta, 191 (2019) 324, https://doi.org/10.1016/j.talanta.2018.08.074

Q.S. Martins, P.V. Almeida, Q.S. Ferreira, A. Oliveira, C. Aguirre, and J.L.B. Faria, Investigation of ostrich oil via Raman and infrared spectroscopy and predictions using the DFT method, Vib. Spectrosc. 104 (2019) 102945, https://doi.org/10.1016/j.vibspec.2019.102945

S. Saravanan, and V. Balachandran, Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130 (2014) 604, https://doi.org/10.1016/j.saa.2014.04.058

T.K. Lima, M. Musso, and D.B. Menezes, Using Raman spectroscopy and an exponential equation approach to detect adulteration of olive oil with rapeseed and corn oil, Food Chem., 333 (2020) 127454, https://doi.org/10.1016/j.foodchem.2020.127454

P.V. Jentzsch and V. Ciobotǎ, Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils, Flavour Fragr. J., 29 (2014) 287, https://doi.org/10.1002/ffj.3203

A.M. Marina, Y.B. Che Man, S.A.H. Nazimah, and I. Amin, Chemical Properties of Virgin Coconut Oil, J. Am. Oil Chem. Soc. 86 (2009) 301, https://doi.org/10.1007/s11746-009-1351-1

M.H. Jamróz, S. Ostrowski, and J.Cz. Dobrowolski, Facilitation of the PED analysis of large molecules by using global coordinates, Spectrochim. Acta A Mol. Biomol. Spectrosc. 149 (2015) 463, https://dx.doi.org/10.1016/j.saa.2015.04.038

R. D. Johnson III (Ed.), Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Release 22, NIST, 2022. https://doi.org/10.18434/T47C7Z

J.A. Antunes et al., Study on optical, electrochemical and thermal properties of the Meldrum acid 5-aminomethylene derivative, Vib. Spectrosc. 112 (2021) 103188, https://doi.org/10.1016/j.vibspec.2020.103188




How to Cite

L. Silva, Q. Martins, A. Ribas, D. Oliveira, R. Lima, and J. Santos, “Raman and FTIR spectroscopy experimental and theoretical in magnetic nanoemulsion from Carapa Guianensis Aublet”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 051003 1–, Sep. 2023.