Vortex magnetic induction: Mathematical, geometric and experimental characterization.

Authors

  • Ángel David Ramírez Galindo División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León
  • Huetzin Pérez Olivas División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León
  • Gustavo Basurto Islas División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León
  • Angelica Hernandez Rayas División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León
  • Fernando González López División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León
  • Teodoro Córdova Fraga División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León

DOI:

https://doi.org/10.31349/RevMexFis.70.030901

Keywords:

FEM Model, Magnetic Stimulation, Simulation, Vortex

Abstract

Some current energy transfer modules and magnetic stimulation systems with vortex fields are mostly composed of a Rodin coil. It has been hypothesized that the most significant changes in the biological system stimulated with vortex magnetic fields are related to the type of field lines and its magnetic field gradient. Therefore, characterizing the vortex magnetic field produced inside this coil and defining the behavior of the field gradient is necessary to take full advantage of its efficiency. The theoretical Biot-Savart law for this coil geometry is discussed in this work, and the magnetic induction lines are characterized. Magnetic field modeling is done with the finite element method; the above processes are correlated with the register of the magnetic field of the Rodin performed with a three-dimensional magnetometer. Furthermore, the results obtained with Rodin coil stimulation are compared with those obtained with Helmholtz coil stimulation of a similar biological system. The effect is widely evident in the first case.

References

W. Jiang et al., Direct imaging of thermally driven domain wall motion in magnetic insulators, Physical review letters 110 (2013) 177202, https://doi.org/10.1103/PhysRevLett.110.177202

S. Cardoso et al., Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications, Journal of Physics D: Applied Physics 50 (2017) 213001, https://doi.org/10.1088/1361-6463/aa66ec

S. Porthun, L. Abelmann, and C. Lodder, Magnetic force microscopy of thin film media for high density magnetic recording, Journal of magnetism and magnetic materials 182 (1998) 238, https://doi.org/10.1016/S0304-8853(97)01010-X

E. Foroozandeh, P. Derakhshan-Barjoei, and M. Jadidi, Toxic effects of 50 Hz electromagnetic field on memory consolidation in male and female mice, Toxicology and industrial health 29 (2013) 293, https://doi.org/10.1177/0748233711433931

I.-F. Chang and H.-Y. Hsiao, Induction of RhoGAP and pathological changes characteristic of Alzheimer’s disease by UAHFEMF discharge in rat brain, Current Alzheimer Research 2 (2005) 559, https://doi.org/10.2174/156720505774932269

F. Teimori et al., The effects of 30 mT electromagnetic fields on hippocampus cells of rats, Surgical Neurology International 7 (2016), https://doi.org/10.4103/2152-7806.185006

N. Marchesi et al., Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields, Journal of cellular physiology 229 (2014) 1776, https://doi.org/10.1002/jcp.24631

C. Osera et al., Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity, Bioelectromagnetics 36 (2015) 219, https://doi.org/10.1002/bem.21900

G. W. Arendash et al., Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice, Journal of Alzheimer’s disease 19 (2010) 191, https://doi.org/10.3233/JAD-2010-1228

G. W. Arendash et al., Electromagnetic treatment to old Alzheimer’s mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit, PLoS One 7 (2012) e35751, https://doi.org/10.1371/journal.pone.0035751

T. Cordova-Fraga et al., Increasing survival study of kidney HEK-293T cells in magnetic field vortices and nano-fluid, IJEIT 4 (2014) 222

F. P. Perez et al., Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response, Experimental gerontology 43 (2008) 307, https://doi.org/10.1016/j.exger.2008.01.004

A. Maldonado-Moreles et al., Low frequency vortex magnetic field reduces amyloid β aggregation, increase cell viability and protect from amyloid β toxicity, Electromagnetic Biology and Medicine 40 (2021) 191, https://doi.org/10. 1080/15368378.2020.1830288

M. Rodin and G. Volk, The rodin number map and rodin coil, Proceedings of the NPA 7 (2010) 437

D. J. Griffiths, Introduction to electrodynamics, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1989), pp. 331-334

MLX90393 Triaxis Micropower Magnetometer - Melexis Mouser., https://www.mouser.mx

2.8 TFT Touch Shield for Arduino with Resistive Touch Screen, https://www.adafruit.com/product/1651

L298N: módulo para controlar motores para Arduino — Hardware libre., https://www.hwlibre.com/l298n/

Arduino - Products., https://www.arduino.cc. 20. V. Zablotskii, T. Polyakova, and A. Dejneka, Cells in the nonuniform magnetic world: how cells respond to highgradient magnetic fields, BioEssays 40 (2018) 1800017, https://doi.org/10.1002/bies.201800017

V. Zablotskii et al., How a high-gradient magnetic field could affect cell life, Scientific reports 6 (2016) 1, https://doi.org/10.1038/srep37407

V. Zablotskii et al., Life on magnets: stem cell networking on micro-magnet arrays, PloS one 8 (2013) e70416, https://doi.org/10.1371/journal.pone.0070416

D. I. Aparicio-Bautista et al., An Extremely Low-Frequency Vortex Magnetic Field Modifies Protein Expression, Rearranges the Cytoskeleton, and Induces Apoptosis of a Human Neuroblastoma Cell Line, Bioelectromagnetics 43 (2022) 225, https://doi.org/10.1002/bem.22400

J. Saikia et al., Electric field disruption of amyloid aggregation: Potential noninvasive therapy for Alzheimer’s disease, ACS chemical neuroscience 10 (2019) 2250, https://doi.org/10.1021/acschemneuro.8b00490

Downloads

Published

2024-05-01

How to Cite

[1]
Ángel D. Ramírez Galindo, H. . Pérez Olivas, G. Basurto Islas, A. Hernandez Rayas, F. González López, and T. Córdova Fraga, “ geometric and experimental characterization”., Rev. Mex. Fís., vol. 70, no. 3 May-Jun, pp. 030901 1–, May 2024.