Multiple soliton and traveling wave solutions for the negative-order-KdV-CBS model


  • N. Raza University of the Punjab
  • S. Arshed University of the Punjab
  • Melike Kaplan Kastamonu University



Multiple exp-function method; traveling wave solutions; extended sinh-Gordon equation expansion technique; negative-orderKdV-CBS model


The (3+1)-dimensional new negative-order-KdV-CBS model is investigated in this study. The suggested model combines the Korteweg-de Vries (KdV) and Calogero-Bogoyavlenskii-Schiff (CBS) equations. This research provides multiple soliton solutions and traveling wave solutions for the KdV-CBS model. Multiple exp-function methods have been used for extracting soliton solutions. For this aim, the extended sinh-Gordon equation expansion approach was selected to get traveling wave solutions. The findings are graphically examined by selecting appropriate values for arbitrary parameters.


E. Fadhal, A. Akbulut, M. Kaplan, M. Awadalla, and K. Abuasbeh, Extraction of Exact Solutions of Higher Order Sasa-Satsuma Equation in the Sense of Beta Derivative, Symmetry 14 (2022) 2390,

R. Hirota, Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons, Phys. Rev. Lett. 27 (1971) 1192,

H. I. Abdel-Gawad and M. S. Osman, Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unied method, Indian J. Pure Appl. Math. 45 (2014) 1,

M. Kaplan and N. Raza, Construction of complexiton-type solutions using bilinear form of Hirota-type, International Journal of Nonlinear Sciences and Numerical Simulation, (2022),

S. Arshed, N. Raza and M. Kaplan, Painleve analysis, dark and singular structures for pseudo-parabolic type equations, Modern Physics Letters B 36 (2022) 2250104,

N. Jannat, M. Kaplan and N. Raza, Abundant soliton-type solutions to the new generalized KdV equation via auto-Bäcklund transformations and extended transformed rational function technique, Opt. Quant. Electron. 54 (2022) 466,

W. X. Ma, Reduced Non-Local Integrable NLS Hierarchies by Pairs of Local and Non-Local Constraints, Int. J. Appl. Comput. Math. 8 (2022) 206,

A. R. Seadawy and K. U. Tariq, Soliton Solutions for Some Non-linear Water Wave Dynamical Models, In: Helal, M. A. (eds) Solitons. Encyclopedia of Complexity and Systems Science Series (Springer, New York, NY, 2022),

A. Akbulut, A.H. Arnous, M.S. Hashemi and M. Mirzazadeh, Solitary waves for the generalized nonlinear wave equation in (3+1) dimensions with gas bubbles using the Nuccis reduction, enhanced and modified Kudryashov algorithms, Journal of Ocean Engineering and Science (2022)

Q. Zhou, M. Ekici, A. Sonmezoglu, J. Manafian, S. Khaleghizadeh and M. Mirzazadeh, Exact solitary wave solutions to the generalized Fisher equation, Optik 127 (2016) 12085,

D. Kumar and M. Kaplan, Application of the modified Kudryashov method to the generalized Schrödinger-Boussinesq equations, Optical and Quantum Electronics 50 (2018) 329,

W. X. Ma, T. Huang and Y. A. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Physica Scripta 82 (2010) 065003,

A. M. Wazwaz, Two new Painlevé integrable KdV-Calogero-Bogoyavlenskii- Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation, Non- linear Dynamics 104 (2021) 4311,

H. Bulut, T. A. Sulaiman and H. M. Baskonus, Dark, bright and other soliton solutions to the Heisenberg ferromagnetic spin chain equation, Superlattices and Microstructures 123 (2018) 12,




How to Cite

N. Raza, S. Arshed, and M. Kaplan, “Multiple soliton and traveling wave solutions for the negative-order-KdV-CBS model”, Rev. Mex. Fís., vol. 70, no. 3 May-Jun, pp. 031305 1–, May 2024.