Inflation in an R 2 -Corrected f(R) gravity model
DOI:
https://doi.org/10.31349/RevMexFis.71.020702Keywords:
f(R) gravity; inflation; Planck 2018 observationAbstract
We conducted an analysis of the inflationary scenario within the f(R) gravity framework, focusing on the Gogoi-Goswami model defined by the parameters α > 0, β > 0, and the characteristic curvature constant Rc. This model exhibits a potential in the Einstein frame characterized by V ∝ φ p . The spectral index for this model is given by ns = 1 − (p + 2)/2N, while the tensor-to-scalar ratio is r = 4p/N, where N denotes the e-folding number at horizon crossing. Although this model aligns with the Planck 2018 observational data within a narrow range, specifically 1.10 ≤ p ≤ 1.25 for N = 50, it becomes increasingly difficult to find an appropriate value for p when N ≥ 54. To overcome this limitation, we propose incorporating an R 2 correction term from the Starobinsky model to enhance the inflationary predictions. Our analysis indicates that this correction improves the model’s performance when optimal parameters are selected, specifically by setting x0 = R0/Rc «1 (with R0 representing the scalar curvature during the late-time accelerated expansion), αmax = O(1), and introducing a parameter γ related to the R2 term within the range −0.024600 < γ < 0. The parameter x0 establishes a connection between α and β via the de Sitter solution of the model. Additionally, the parameter Rc can be estimated similarly to that in the Starobinsky model, as Rc ~ (1.3 × 10−5 /κ)2 .
References
A.H. Guth and E. J. Weinberg, Cosmological consequences of a first-order phase transition in the SU 5 grand unified model, Phys. Rev. D 23 (1981) 876, https://doi.org/10.1103/PhysRevD.23.876
A. D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389, https://doi.org/10.1016/0370-2693(82)91219-9
A. Albrecht and P. J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Physical Phys. Lett. 48 (1982) 1220, https://doi.org/10.1103/PhysRevLett.48.1220
A. R. Liddle and D. H. Lyth, COBE, gravitational waves, inflation and extended inflation, Phys. Lett. B 291 (1992) 391, https://doi.org/10.1016/0370-2693(92)91393-N
A. R. Liddle, P. Parsons, and J. D. Barrow, Formalizing the slow-roll approximation in inflation, Phys. Rev. D 50 (1994) 7222, https://doi.org/10.1103/PhysRevD.50.7222
T. P. Sotiriou and V. Faraoni, f(R) theories of gravity, Reviews of Modern Physics 82 (2010) 451, https://doi.org/10.1103/RevModPhys.82.451
H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, Monthly Notices of the Royal Astronomical Society 150 (1970) 1, https://doi.org/10.1093/mnras/150.1.1
T. P. Sotiriou and S. Liberati, Metric-affine f(R) theories of gravity, Annals of Physics 322 (2007) 935, https://doi.org/10.1016/j.aop.2006.06.002
A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99, https://doi.org/10.1016/0370-2693(80)90670-X
Y. Akrami, et al., Planck 2018 results-X. Constraints on inflation, Astronomy & Astrophysics 641 (2020) A10, https://doi.org/10.1051/0004-6361/201833887
W. Hu and I. Sawicki, Models of f(R) cosmic acceleration that evade solar system tests, Phys. Rev. D 76 (2007) 064004, https://doi.org/10.1103/PhysRevD.76.064004
S. I. Kruglov, Arctan-gravity model, Universe 1 (2015) 82, https://doi.org/10.3390/universe1010082
K. Bamba and S. D. Odintsov, Inflationary cosmology in modified gravity theories, Symmetry 7 (2015) 220, https://doi.org/10.3390/sym7010220
M. Amin, S. Khalil, and M. Salah, A viable logarithmic f(R) model for inflation, Journal of Cosmology and Astroparticle Physics 2016 (2016) 043, https://doi.org/10.1088/1475-7516/2016/08/043
R. H. S. Budhi, Inflation due to non-minimal coupling of f(R) gravity to a scalar field, Journal of Physics: Conference Series 1127 (2019) 012018, https://doi.org/10.1088/1742-6596/1127/1/012018
L. Amendola et al., Conditions for the cosmological viability of f(R) dark energy models, Phys. Rev. D 75 (2007) 083504, https://doi.org/10.1103/PhysRevD.75.083504
L. Granda, A viable model for modified gravity, Astrophysics and Space Science 355 (2015) 381, https://doi.org/10.1007/s10509-014-2178-2
K. Dutta, S. Panda, and A. Patel, Viability of an arctan model of f(R) gravity for late-time cosmology, Phys. Rev. D 94 (2016) 024016, https://doi.org/10.1103/PhysRevD.94.024016
S. Nojiri and S. D. Odintsov, Modified f(R) gravity unifying R m inflation with the ΛCDM epoch, Phys. Rev. D 77 (2008) 026007, https://doi.org/10.1103/PhysRevD.77.026007
G. Cognola et al., Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion, Physical Review D 77 (2008) 046009, https://doi.org/10.1103/PhysRevD.77.046009
D. J. Gogoi and U. Dev Goswami, A new f(R) gravity model and properties of gravitational waves in it, The European Physical Journal C 80 (2020) 1101, https://doi.org/10.1140/epjc/s10052-020-08684-3
S. Hendi, B. Eslam Panah, and R. Saffari, Exact solutions of three-dimensional black holes: Einstein gravity versus F(R) gravity, International Journal of Modern Physics D 23 (2014) 1450088, https://doi.org/10.1142/S0218271814500886
L. Amendola and S. Tsujikawa, Dark energy: theory and observations (Cambridge University Press, 2010)
K. Bamba, C.-Q. Geng, and L.-W. Luo, Generation of largescale magnetic fields from inflation in teleparallelism, Journal of Cosmology and Astroparticle Physics 2012 (2012) 058, https://doi.org/10.1088/1475-7516/2012/10/058
L. Granda, Unified Inflation and Late-Time Accelerated Expansion with Exponential and R2 Corrections in Modified Gravity, Symmetry 12 (2020) 794, https://doi.org/10.3390/sym12050794
S. Nojiri, S. Odintsov, and V. Oikonomou, Modified gravity theories on a nutshell: inflation, bounce and late-time evolution, Physics Reports 692 (2017) 1, https://doi.org/10.1016/j.physrep.2017.06.001
T. Faulkner et al., Constraining f(R) gravity as a scalar-tensor theory, Phys. Rev. D 76 (2007) 063505, https://doi.org/10.1103/PhysRevD.76.063505
J. Velásquez and L. Castañeda, Equivalence between Scalar Tensor theories and f(R)-gravity: from the action to cosmological perturbations, Journal of Physics Communications 4 (2020) 055007, https://doi.org/10.1088/2399-6528/ab902f
C. Brans and R. H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925, https://doi.org/10.1103/PhysRev.124.925
A. De Felice and S. Tsujikawa, f(R) theories, Living Reviews in Relativity 13 (2010) 1, https://doi.org/10.12942/lrr-2010-3
S. Kruglov, Modified arctan-gravity model mimicking a cosmological constant, Phys. Rev. D 89 (2014) 064004, https://doi.org/10.1103/PhysRevD.89.064004
S. Chakraborty, S. Pal, and A. Saa, Dynamical equivalence of f(R) gravity in Jordan and Einstein frames, Phys. Rev. D 99 (2019) 024020, https://doi.org/10.1103/PhysRevD.99.024020
Q. Gao and Y. Gong, The challenge for single field inflation with BICEP2 result, Phys. Lett. B 734 (2014) 41, https://doi.org/10.1016/j.physletb.2014.05.018
S. Nojiri and S. D. Odintsov, Unifying inflation with ΛCDM epoch in modified f(R) gravity consistent with Solar System tests, Phys. Lett. B 657 (2007) 238, https://doi.org/10.1016/j.physletb.2007.10.027
V. Müller, H.-J. Schmidt, and A. A. Starobinsky, The stability of the de Sitter space-time in fourth order gravity, Physics Letters B 202 (1988) 198, https://doi.org/10.1016/0370-2693(88)90007-X
S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, International Journal of Geometric Methods in Modern Physics 4 (2007) 115, https://doi.org/10.1142/S0219887807001928
H. Motohashi, A. A. Starobinsky, and J. Yokoyama, Future oscillations around phantom divide in f(R) gravity, Journal of Cosmology and Astroparticle Physics 2011 (2011) 006, https://doi.org/10.1088/1475-7516/2011/06/006
S. V. Ketov and M. Y. Khlopov, Extending Starobinsky inflationary model in gravity and supergravity, Bled Workshops Phys. 19 (2018) 148, https://doi.org/10.48550/arXiv.1809.09975
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Romy H. S. Budhi, Dhani N. I Syamputra

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.