Raman spectroscopy and electrical properties of polypyrrole doped dodecylbenzene sulfonic acid/Y2O3 composites

Authors

  • Muhammad Irfan Bahauddin Zakariya University
  • A. Mustafa University of Health Sciences
  • A. Shakoor Bahauddin Zakariya University
  • A. N. Niaz Bahauddin Zakariya University
  • N. Anwar Bahauddin Zakariya University
  • M. Imran Govt College University
  • A. Majid University of Gujrat

DOI:

https://doi.org/10.31349/RevMexFis.70.010502

Keywords:

Raman analysis, EIS, PPy-DBSA, Y2O3, DC Conductivity

Abstract

The doped dodecylbenzene sulfonic acid (DBSA) with polypyrrole (PPy) and also incorporated an increasing concentration of Y2O3 to obtain the composites of PPy-DBSA-Y2O3 via chemical polymerization technique. The PPy-DBSA-Y2O3 composites formation were confirmed by interaction between PPy-DBSA and Y2O3-particles utilizing Raman spectroscopy. Thermal stability of PPy-DBSA- Y2O3 composites was improved as enhanced the load of Y2O3-particles. The increase in DC conductivity by mixing Y2O3 into PPy-DBSA at all temperatures showed the three-dimensional Mott’s variable range hopping model. Density of localized states, hopping dimension as well as activation energy are computed and found to be affected due to the presence of Y2O3 in DBSA-PPy. The ESR of Y2O3 (~12 Ω), PPy (~11.80 Ω), PPy-DBSA (~11.30 Ω) and PPy-DBSA-8%Y2O3 composite (~9.50 Ω). EIS results confirm that the PPy-DBSA-8% Y2O3 composite with a low value of impedance gives a maximum value of electrical conductivity.

References

Skotheim, Terje A., ed. Handbook of conducting polymers 3rd Edition CRC press, (1997)1-1680.

Heeger, A. J., Kivelson, S., Schrieffer, J. R., & Su, W. P. Solitons in conducting polymers. Reviews of Modern Physics, 60 (3), (1988) 781.

Cao, Y., Smith, P., & Heeger, A. J. Spectroscopic studies of polyaniline in solution and in spin-cast films. Synthetic Metals, 32 (3), (1989).263-281.

Manohar, S. K., MacDiarmid, A. G., & Epstein, A. J. Polyaniline: Pernigranile, an isolable intermediate in teh conventional chemical synthesis of emeraldine. Synthetic Metals, 41(1-2), (1991) 711-714.

Wu, C. S. Preparation and characterization of an aromatic polyester/polyaniline composite and its improved counterpart. Express Polymer Letters, 6 (6) (2012).

De Paoli, M. A., Waltman, R. J., Diaz, A. F., & Bargon, J. An electrically conductive plastic composite derived from polypyrrole and poly (vinyl chloride). Journal of Polymer Science: Polymer Chemistry Edition, 23 (6), (1985)1687-1698.

Billingham, N. C., & Calvert, P. D. Electrically conducting polymers-a polymer science viewpoint. In Conducting Polymers/Molecular Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, (2005)1-104.

Moons, E. Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes. Journal of Physics: Condensed Matter, 14 (47), (2002) 12235.

Bhattacharya, A., Ganguly, K. M., De, A., & Sarkar, S. A new conducting nanocomposite- PPy-zirconium (IV) oxide. Materials Research Bulletin, 31(5), (1996) 527-530

Su, S. J., & Kuramoto, N. Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Metals, 114 (2), (2000)147-153.

Raghavendra, S. C., Khasim, S., Revanasiddappa, M., Ambika Prasad, M. V. N., & Kulkarni, A. B. Synthesis, characterization and low frequency ac conduction of polyaniline/fly ash composites. Bulletin of Materials Science, 26, (2003) 733-739.

Chen, W., Li, X., Xue, G., Wang, Z., & Zou, W. Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres. Applied Surface Science, 218 (1-4), (2003) 216-222.

De, A., Das, A., & Lahiri, S. Heavy ion irradiation on conducting polypyrrole and ZrO2–polypyrrole nanocomposites. Synthetic Metals, 144 (3), (2004) 303-307.

Bredas, J. L., Scott, J. C., Yakushi, K., & Street, G. B. Polarons and bipolarons in polypyrrole: Evolution of the band structure and optical spectrum upon doing. Physical Review B, 30 (2), (1984) 1023.

Elliott, S. R. AC conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, 36 (2), (1987) 135-217.

Epstein, A. J., Gibson, H. W., Chaikin, P. M., Clark, W. G., & Grüner, G. Frequency and electric field dependence of the conductivity of metallic polyacetylene. Physical Review Letters, 45 (21),(1980)1730.

Chen, X. B., Issi, J. P., Devaux, J., & Billaud, D. The stability of polypyrrole and its composites. Journal of Materials Science, 32, (1997) 1515-1518.

Cho, K. G., Kumar, D., Holloway, P. H., & Singh, R. K. Luminescence behavior of pulsed laser deposited Eu: Y2O3 thin film phosphors on sapphire substrates. Applied Physics Letters, 73(21), (1998) 3058-3060.

Tanabe, K., Misono, M., Hattori, H., & Ono, Y. New solid acids and bases: their catalytic properties. Elsevier, (1990) 1-365.

Wang, S. Y., & Lu, Z. H. Preparation of Y2O3 thin films deposited by pulse ultrasonic spray pyrolysis. Materials Chemistry and Physics78 (2), (2003) 542-545.

Dasgupta, N., Krishnamoorthy, R., & Jacob, K. T. Glycol–nitrate combustion synthesis of fine sinter-active yttria. International Journal of Inorganic Materials, 3 (2),(2001)143-149.

Wu, H. D., Lei, L., Jia, Y. G., & Gui, X. Study on Pyrolysis Behavior of Yttrium Oxalate and Kinetic of Yttria Grain Grown. In Advanced Materials Research, 1(236), (2011) 1679-1686.

Roy, S., Sigmund, W., & Aldinger, F. Grain modification in Y2O3 powders-coarse to nanoporous. Journal of materials science letters, 16 (14), (1997) 1148-1150.

Demoustier-Champagne, S., & Stavaux, P. Y. Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules. Chemistry of Materials,11(3), (1999) 829-834.

Gupta, S. Hydrogen bubble‐assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 39 (10), (2008)1343-1355.

Ward, Y., & Mi, Y. The study of miscibility and phase behaviour of phenoxy blends using Raman spectroscopy. Polymer, 40 (9), (1999) 2465-2468.

Tagowska, M., Pałys, B., & Jackowska, K. Polyaniline nanotubules—anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synthetic metals,142 (1-3), (2004) 223-229.

Santos, M. J. L., Brolo, A. G., & Girotto, E. M. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochimica acta, 52 (20), (2007) 6141-6145.

Bose, S., Kuila, T., Uddin, M. E., Kim, N. H., Lau, A. K., & Lee, J. H. In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer, 51(25), (2010) 5921-5928.

Cheng, Q., Pavlinek, V., Li, C., Lengalova, A., He, Y., & Saha, P. Synthesis and structural properties of polypyrrole/nano-Y2O3 conducting composite. Applied Surface Science, 253 (4), (2006)1736-1740.

Shaktawat, V., Jain, N., Saxena, R., Saxena, N. S., & Sharma, T. P. Electrical conductivity and optical band gap studies of polypyrrole doped with different acids. Journal of Optoelectronics and Advanced Materials, 9 (7), (2007) 2130.

Mott, N. F., & Davis, E. A. Electronic processes in non-crystalline materials. Oxford university press, (2012)1-608.

Jonscher, A. K. Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14),(1999) R57.

Louati, B., Gargouri, M., Guidara, K., & Mhiri, T. AC electrical properties of the mixed crystal (NH4)3H (SO4)1.42 (SeO4) 0.58. Journal of Physics and Chemistry of Solids, 66(5), (2005) 762-765.

Singh, R. K., Kumar, A., & Singh, R. Mechanism of charge transport in poly (2, 5-dimethoxyaniline). Journal of Applied Physics, 107(11), (2010) 113711.

Elahi, A., Irfan, M., Shakoor, A., Niaz, N. A., Mahmood, K., & Qasim, M. Effect of loading titanium dioxide on structural, electrical and mechanical properties of polyaniline nanocomposites. Journal of Alloys and Compounds, 651, (2015) 328-332.

Joo, J., Lee, J. K., Baeck, J. S., Kim, K. H., Oh, E. J., & Epstein, J. Electrical, magnetic, and structural properties of chemically and electrochemically synthesized polypyrroles. Synthetic metals, 117(1-3), (2001) 45-51.

Wolter, A., Rannou, P., Travers, J. P., Gilles, B., & Djurado, D. Model for aging in HCl-protonated polyaniline: structure, conductivity, and composition studies. Physical review B, 58(12), (1998) 7637.

Wang, Z. H., Scherr, E. M., MacDiarmid, A. G., & Epstein, A. J. Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional metallic states. Physical Review B, 45 (8), (1992) 4190.

Hu, T., & Shklovskii, B. I. Theory of hopping conductivity of a suspension of nanowires in an insulator. Physical Review B, 74 (5), (2006) 054205.

Maddison, D. S., & Tansley, T. L. Variable range hopping in polypyrrole films of a range of conductivities and preparation methods. Journal of Applied Physics, 72(10), (1992) 4677-4682.

Downloads

Published

2024-01-03

How to Cite

[1]
M. Irfan, “Raman spectroscopy and electrical properties of polypyrrole doped dodecylbenzene sulfonic acid/Y2O3 composites”, Rev. Mex. Fís., vol. 70, no. 1 Jan-Feb, pp. 010502 1–, Jan. 2024.