Study by transmition electron microscopy of Co-WC/Ni interface produced by solid state bonding

Authors

  • José Lemus-Ruiz Universidad Michoacana de San Nicolás de Hidalgo
  • G. Castro-Sánchez Universidad Michoacana de San Nicolás de Hidalgo
  • J. Reyes-Gasga IF-UNAM
  • R. García-García IF-UNAM
  • J. L. Marulanda-Arevalo Universidad Tecnológica de Pereira
  • L. Ortega-Cabello UAM-Xochimilco

DOI:

https://doi.org/10.31349/RevMexFis.70.051601

Keywords:

WC-Co/Ni interface; solid state bonding; diffusion; characteristic energy-dispersive x-ray spectroscopy; electron microscopy

Abstract

The microstructure of the interface and inter-diffusion behavior during bonding plays an important role to understand and to control the joining process for better mechanical properties of an interface. In this work, the microstructure of the formed interlayer between cermet WC-Co and metallic Ni after solid state bonding (the WC-Co/Ni interface) was analyzed by scanning (SEM) and transmission (TEM) electron microscopy, and characteristic energy dispersive x-ray spectroscopy (EDS). The WC-Co/Ni joint was produced at 980°C for 25 minutes in argon atmosphere. For SEM observation, the samples were mechanically polished and etched. TEM samples were produced parallel (sample P), perpendicular (sample T) and oblique (sample TP) to the interface by focused ion beam (FIB). The EDS results indicate the inter-diffusion at the interface of W, Ni, Co and C and the segregation of Ni and Co, together with the formation of crystalline phases and an amorphous carbon layer. W follows a homogeneous diffusion while Ni and Co show a non-homogeneous diffusion behavior.

References

L. Ceja-Cárdenas, J. Lemus-Ruiz, S. Dias de la Torre, R. Escalona-González, Interfacial behavior in the brazing of silicon nitride joint using a Nb-foil interlayer. J Mater. Proc. Tech. 213 (2013) 411, https://doi.org/10.1016/j.jmatprotec.2012.09.019

M.I. Barrena, J.M. Gómez de Salazar, L. Matesanz, Interfacial microstructure and mechanical strength of WC–Co/90MnCrV8 cold work tool steel diffusion bonded joint with Cu/Ni electroplated interlayer. Mater. Des. 31 (2010) 3389, https://doi.org/10.1016/j.matdes.2010.01.050

H.S. Hosseini, M. Shamanian, A. Kermanpur, Microstructural and weldability analysis of Inconel617/AISI 310 stainless steel dissimilar welds. Int. J. Pres. Ves. Pip. 144 (2016) 18, https://doi.org/10.1016/j.ijpvp.2016.05.004

K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials. CIRP Ann–Manuf. Techn. 64 (2015) 679, https://doi.org/10.1016/j.cirp.2015.05.006

M. Uzkut, N.S. Köksal, B.S. Ünlü, The determination of element diffusion in connecting SAE1040/WC material by brazing. J. Mater. Proc. Tech. 169 (2005) 409, https://doi.org/10.1016/j.jmatprotec.2005.05.001

O. Sayman, F. Sen, E. Celik, Y. Arman, Thermal stress analysis of WC–Co/Cr–Ni multilayer coatings on 316L steel substrate during cooling process. Mater. Des. 30 (2009) 770, https://doi.org/10.1016/j.matdes.2008.06.004

J. Lemus-Ruiz, L. Ceja-Cárdenas, J.A. Verduzco, O. Flores, Joining of tungsten carbide to nickel by direct diffusion bonding and using a Cu-Zn alloy. J. Mater. Sci. 43 (2008) 6296, https://doi.org/10.1007/s10853-008-2894-5

Y. Guo, Y. Wang, B. Gao, Z. Shi, Z. Yuan, Rapid diffusion bonding of WC-Co cemented carbide to 40Cr steel with Ni interlayer: Effect of surface roughness and interlayer thickness. Cer. Int. 42 (2016) 16729, https://doi.org/10.1016/j.ceramint.2016.07.145

K. Bonny, P. De Baets, Y. Perez, J. Vleugels, B. Lauwers, Friction and wear characteristics of WC–Co cemented carbides in dry reciprocating sliding contact. Wear 268 (2010) 1504, https://doi.org/10.1016/j.wear.2010.02.029

Z. Poniznik, Z. Nowak, M. Batista, Numerical modeling of deformation and fracture of reinforcing fibers in ceramic-metal composites. Int. J. Dam. Mech. 26 (2017) 711, https://doi.org/10.1177/1056789515611945

K. Feng, H. Chen, J. Xiong, Z. Guo, Investigation on diffusion bonding of functionally graded WC.Co/Ni composite and stainless steel. Mat. Des. 46 (2013) 622, https://doi.org/10.1016/j.matdes.2012.11.006

H. Chen, K. Feng, J. Xiong, J. Luo, Z. Guo, H. Wang, Characterization and forming process of a functionally graded WC–Co/Ni composite. Int. J. Refract. Met. Hard Mater. 35 (2012) 306, https://doi.org/10.1016/j.ijrmhm.2012.04.014

M.N. Avettand-Fènoël, T. Nagaoka, H. Fujii, R. Taillard, Effect of a Ni interlayer on microstructure and mechanical properties of WC-12Co cermet/SC45 steel friction stir welds. J. Man. Proc. 40 (2019) 1, https://doi.org/10.1016/j.jmapro.2019.02.032

T. Wagner, R. Kirchheim, M. Rühle, Chemical reactions at metal/ceramic interfaces during diffusion bonding. Act. Metall. Mater. 43 (1995) 1053,

Z. Zhang, Y. Long, S. Cazottes, R. Daniel, C. Mitterer, G. Dehm, The peculiarity of the metal-ceramic interface. Sci. Repor. 5 (2015) 11460, https://doi.org/10.1038/srep11460

A.J. Markworth, K.S. Ramesh, W.P. Parks, Modeling studies applied to functionally graded materials. J. Mater. Sci. 30 (1995) 2183, https://doi.org/10.1007/BF01184560

K. Jurkiewicz, M. Pawlyta, A. Burian, Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. J. Carbon Res. 4 (2018) 68, https://doi.org/10.3390/c4040068

J. Reyes-Gasga, M. Jose-Yacaman, Quasicrystalline phases and rational approximants obtained from vapor deposited Al Mn thin films. J. Vac. Sci. Tech. A 8 (1990) 3455, https://doi.org/10.1116/1.576531

J. Reyes-Gasga, G. Mondragón-Galicia, M. Jose-Yacaman, In-situ TEM observation of phase transitions in thin films of the Al-Mn system. Thin Sol. Films 227 (1993) 24, https://doi.org/10.1016/0040-6090(93)90182-0

J. Reyes-Gasga, R. Garcia, Opening and closing of channels during phase transitions in Al-Mn thin films. Thin Sol. Films 253 (1994) 254, https://doi.org/10.1016/0040-6090(94)90330-1

J. Reyes-Gasga, R. Garcia, L. Vargas-Ulloa, In-situ observation of fractal structures and electrical conductivity in human tooth enamel. Phil. Magaz. A 75 (1997) 1023, https://doi.org/10.1080/01418619708214008

J. Rodelas, G. Hilmas, R.S. Mishra, Sintering cobalt-cemented tungsten carbide to tungsten heavy alloys. Int. J. Refract. Met. Hard Mater. 27 (2009) 835, https://doi.org/10.1016/j.ijrmhm.2009.03.001

W. Wunderlich, The atomistic structure of metal/ceramic interfaces is the key issue for developing better properties. Met. 4 (2014) 410, https://doi.org/10.3390/met4030410

R.W. Balluffi RW, S.M. Allen, W.C. Carter, Kinetics of Materials, in R.A. Kemper (Ed.), (Willey Interscience, John Wiley and Sons, Inc. Publication, USA, 2005).

G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists: A Comprehensive Guide, 7th ed. (Academic Press, 2012), Table 9.5.

Downloads

Published

2024-09-01

How to Cite

[1]
J. Lemus-Ruiz, G. Castro-Sánchez, J. Reyes-Gasga, R. García-García, J. L. Marulanda-Arevalo, and L. Ortega-Cabello, “Study by transmition electron microscopy of Co-WC/Ni interface produced by solid state bonding”, Rev. Mex. Fís., vol. 70, no. 5 Sep-Oct, pp. 051601 1–, Sep. 2024.