Systematic study of the structural, electronic and optical properties of silicon nanowires

Authors

DOI:

https://doi.org/10.31349/RevMexFis.70.011003

Keywords:

Silicon Nanowires, Van Hove Singularities, Density Functional Theory

Abstract

In this work we analyzed the structural, electronic, and optical properties of a set of silicon nanowires oriented in different directions, using the density functional theory. Structural optimization was performed in order to relax the atomic coordinates and cell parameters, after which the electronic band structure and density of states were obtained. Simultaneously, we computed the imaginary part of the dielectric function using the elements of the dipolar matrix. Furthermore, we related the transitions between the Van Hove singularities in the density of states with peaks in the absorption spectra, thus identifying relationships among them, which could be used to characterize the density of states by means of the absorption spectrum. The results showed that the electronic and optical properties depend on the diameter and orientation of the nanowires.

References

P. Yu, et al., Design and fabrication of silicon nanowires towards efficient solar cells, Nano Today 11 (2016) 704, https://doi.org/10.1016/j.nantod.2016.10.001

N. S. Mohammad, Understanding quantum confinement in nanowires: basics, applications and possible laws, Journal of Physics: Condensed Matter 26 (2014) 423202, 10.1088/0953-8984/26/42/423202

A. M. Morales and C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science 279 (1998) 208, 10.1126/science.279.5348.208

J. Holmes, et al., Control of thickness and orientation of solution-grown silicon nanowires, Science 287 (2000) 1471, 10.1126/science.287.5457.1471

Y. Cui, et al., Diameter-controlled synthesis of single-crystal silicon nanowires, Applied Physics Letters 78 (2001) 2214,10.1063/1.1363692

B. Tian, et al., Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449 (2007) 885, 10. 1038/nature06181

C. Chan, et al., High-performance lithium battery anodes using silicon nanowires, Nat Nanotechnol 3 (2008) 31, 10.1038/ nnano.2007.411

B. Timko, et al., Electrical recording from hearts with flexible nanowire device arrays, Nano Lett 106 (2009) 914, 10.1021/nl900096z

A. Hochbaum, et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature 451 (2008) 163, 10.1038/ nature06381

A. Polman, Teaching silicon new tricks, Nature Materials 1 (2002) 10, 10.1038/nmat705

X. Zhao, et al., Quantum Confinement and Electronic Properties of Silicon Nanowires, Phys. Rev. Lett 92 (2004) 236805, 10.1103/PhysRevLett.92.236805

M.-F. Ng, et al., Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach, Phys. Rev. B 76 (2007) 155435, 10.1103/PhysRevB.76.155435

R. Rurali, et al., Accurate single-particle determination of the band gap in silicon nanowires, Phys. Rev. B 76 (2007) 113303, 10.1103/PhysRevB.76.113303

Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, Surface and Electronic Properties of Hydrogen Terminated Si [001] Nanowires, J. Phys. Chem. C 115 (2011) 12586, 10.1021/ jp106048u

N. Man-Fai, et al., First-Principles Study of Silicon Nanowire Approaching the Bulk Limit, Nano Letters 11 (2011) 4794,10.1021/nl2026212

M. Palummo, S. Ossicini, and R. Del Sole, Many-body effects on the electronic and optical properties of Si nanowires from ab initio approaches, physica status solidi (b) 247 (2010) 2089,https://doi.org/10.1002/pssb.200983958

R. J. Bondi, S. Lee, and G. S. Hwang, First-Principles Study of the Structural, Electronic, and Optical Properties of Oxide- Sheathed Silicon Nanowires, ACS Nano 5 (2011) 1713, 10.1021/nn102232u

S. Karazhanov, E. Marstein, and A. Holt, Ab-initio study of silicon nanowires, physica status solidi c 9 (2012) 1499, https://doi.org/10.1002/pssc.201100758

M. Amato, et al., Crystal Phase Effects in Si Nanowire Polytypes and Their Homojunctions, Nano Letters 16 (2016) 5694,10.1021/acs.nanolett.6b02362

G. Shi and E. Kioupakis, Electronic and Optical Properties of Nanoporous Silicon for Solar-Cell Applications, ACS Photonics 2 (2015) 208, 10.1021/ph5002999

A. Sánchez-Castillo and C. Noguez, Understanding Optical Activity in Single-Walled Carbon Nanotubes from First- Principles Studies, The Journal of Physical Chemistry C 114 (2010) 9640, 10.1021/jp1011582

A. Herrera-Carbajal, et al., A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon–germanium nanotubes, Phys. Chem. Chem. Phys. 23 (2021) 13075, 10.1039/D1CP00519G

J. Soler, et al., The SIESTA method for ab initio order-N materials simulation, Journal of Physics Condensed Matter 14 (2002) 2745, 10.1088/0953-8984/14/11/302

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048, 10.1103/PhysRevB.23.

N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993, 10.1103/PhysRevB.43.1993

J. Junquera, et al., Numerical atomic orbitals for linear-scaling calculations, Phys. Rev. B 64 (2001) 235111, 10.1103/PhysRevB.64.235111

M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik 389 (1927) 457, 10.1002/andp.19273892002

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864, 10.1103/PhysRev. 136.B864

J. C. Slater, The Theory of Complex Spectra, Phys. Rev. 34(1929) 1293, 10.1103/PhysRev.34.1293

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133, 10.1103/PhysRev. 140.A1133

J. P. Perdew, et al., Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits, The Journal of Chemical Physics 123 (2005) 062201, 10.1063/1.1904565

H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B 13 (1976) 5188, 10.1103/PhysRevB.13.5188

H. Scheel, S. Reich, and C. Thomsen, Electronic band structure of high-index silicon nanowires, physica status solidi (b) 242(2005) 2474, 10.1002/pssb.200541133

T. Akiyama, K. Nakamura, and T. Ito, Stacking sequence preference of pristine and hydrogen-terminated Si nanowires on Si(111) substrates, Phys. Rev. B 74 (2006) 033307, 10.1103/PhysRevB.74.033307

T. Vo, A. J. Williamson, and G. Galli, First principles simulations of the structural and electronic properties of silicon nanowires, Phys. Rev. B 74 (2006) 045116, 10.1103/PhysRevB.74.045116

C. Kittel, Introduction to Solid State Physics, chap. CRYSTAL BINDING AND ELASTIC CONSTANTS, pp. 86–87, 7th ed.(John Wiley and Sons, Inc., New York, Chichester„ 1996).

F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences 30(1944) 244, 10.1073/pnas.30.9.244

F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev. 71(1947) 809, 10.1103/PhysRev.71.809

C. Kittel, Introduction to Solid State Physics, chap. OPTICAL PROCESSES AND EXCITONS, pp. 307–308, 7th ed. (John Wiley and Sons, Inc., New York, Chichester„ 1996).

Downloads

Published

2024-01-03

How to Cite

[1]
A. de J. . Herrera-Carbajal, A. . Sánchez-Castillo, J. de J. . Pelayo-Cárdenas, M. I. . Reyes-Valderrama, and V. Rodriguez-Lugo, “Systematic study of the structural, electronic and optical properties of silicon nanowires”, Rev. Mex. Fís., vol. 70, no. 1 Jan-Feb, pp. 011003 1–, Jan. 2024.