Photothermal properties of Fe3O4 nanoparticles coated with turmeric extract

Authors

  • Margarita Alvarado CINVESTAV
  • A. E. Matías Reyes CINVESTAV
  • A. Cruz-Orea CINVESTAV
  • J. Santoyo-Salazar CINVESTAV
  • F. A. Domínguez-Pacheco SEPI-ESIME Zacatenco
  • C. Hernández-Aguilar SEPI-ESIME Zacatenco
  • A. A. Duran-Ledezma SEPI-ESIME Ticomán

DOI:

https://doi.org/10.31349/RevMexFis.70.011601

Keywords:

Magnetite, Nanoparticles, Curcuma longa, Photopyroelectric technique, Thermal diffusivity, Thermal effusivity

Abstract

In this study, we synthesized magnetite nanoparticles through a modified coprecipitation route and subsequently coated them directly with Curcuma longa extract. The resulting nanoparticles were then dispersed in distilled water to create a nanofluid. The particle size distribution ranged between 9 to 18 nm according to Transmission Electron Microscopy and Dynamic Light Scattering. The nanofluid’s thermal parameters were obtained by photothermal techniques, obtaining their thermal diffusivity, effusivity, conductivity, and heat capacity per unit volume. The Thermal Wave Resonator Cavity was employed to measure the thermal diffusivity, while the Inverse Photopyroelectric photothermal technique was used to determine the effusivity value. The obtained thermal parameters were close to the carrier liquid (distilled water), being a preliminary study that can be analyzed to improve the heat transfer application in other suspension fluids.

References

H. Liang, J. Guo, Y. Shi, G. Zhao, S. Sun, X. Sun, Porous yolk-shell Fe/Fe3O4 nanoparticles with controlled exposure of highly active Fe(0) for cancer therapy, Biomaterials. 268 (2021) 120530. https://doi.org/10.1016/j.biomaterials.2020.120530.

W. Hu, Q. Qi, H. Hu, C. Wang, Q. Zhang, Z. Zhang, Y. Zhao, X. Yu, M. Guo, S. Du, Y. Lu, Fe3O4 liposome for photothermal/chemo-synergistic inhibition of metastatic breast tumor, Colloids Surf A Physicochem Eng Asp. 634 (2022) 127921. https://doi.org/10.1016/j.colsurfa.2021.127921.

M. Yusefi, K. Shameli, Z. Hedayatnasab, S.-Y. Teow, U.N. Ismail, C.A. Azlan, R. Rasit Ali, Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment, Research on Chemical Intermediates. 47 (2021) 1789–1808. https://doi.org/10.1007/s11164-020-04388-1.

K. Wang, X.-G. Xu, Y.-L. Ma, C.-R. Sheng, L.-N. Li, L.-Y. Lu, J. Wang, Y.-N. Wang, Y. Jiang, Fe3O4@Angelica sinensis polysaccharide nanoparticles as an ultralow-toxicity contrast agent for magnetic resonance imaging, Rare Metals. 40 (2021) 2486–2493. https://doi.org/10.1007/s12598-020-01620-0.

A.M. Beyene, M. Moniruzzaman, A. Karthikeyan, T. Min, Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications, Nanomaterials. 11 (2021) 460. https://doi.org/10.3390/nano11020460.

Y. Guo, Q. Sun, F. Wu, Y. Dai, X. Chen, Polyphenol‐Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery, Advanced Materials. 33 (2021) 2007356. https://doi.org/10.1002/adma.202007356.

A.L. Ramirez-Nuñez, L.F. Jimenez-Garcia, G.F. Goya, B. Sanz, J. Santoyo-Salazar, In vitro magnetic hyperthermia using polyphenol-coated Fe 3 O 4 @ γ Fe 2 O 3 nanoparticles from Cinnamomun verum and Vanilla planifolia : the concert of green synthesis and therapeutic possibilities, Nanotechnology. 29 (2018) 074001. https://doi.org/10.1088/1361-6528/aaa2c1.

M.L. Alvarado-Noguez, A.E. Matías-Reyes, M. Pérez-González, S.A. Tomás, C. Hernández-Aguilar, F.A. Domínguez-Pacheco, J.A. Arenas-Alatorre, A. Cruz-Orea, M.D. Carbajal-Tinoco, J. Galot-Linaldi, E. Estrada-Muñiz, L. Vega-Loyo, J. Santoyo-Salazar, Processing and Physicochemical Properties of Magnetite Nanoparticles Coated with Curcuma longa L. Extract, Materials. 16 (2023) 3020. https://doi.org/10.3390/ma16083020.

K. Mansouri, S. Rasoulpoor, A. Daneshkhah, S. Abolfathi, N. Salari, M. Mohammadi, S. Rasoulpoor, S. Shabani, Clinical effects of curcumin in enhancing cancer therapy: A systematic review, BMC Cancer. 20 (2020). https://doi.org/10.1186/s12885-020-07256-8.

C. Huang, H.F. Lu, Y.H. Chen, J.C. Chen, W.H. Chou, H.C. Huang, Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells, BMC Complement Med Ther. 20 (2020) 68. https://doi.org/10.1186/s12906-020-2857-1.

M. Mandal, P. Jaiswal, A. Mishra, Role of curcumin and its nanoformulations in neurotherapeutics: A comprehensive review, J Biochem Mol Toxicol. 34 (2020). https://doi.org/10.1002/jbt.22478.

A.J. Ruby, G. Kuttan, K. Dinesh Babu, K.N. Rajasekharan, R. Kuttan, Anti-tumour and antioxidant activity of natural curcuminoids, Cancer Lett. 94 (1995) 79–83. https://doi.org/10.1016/0304-3835(95)03827-J.

X. Liu, B. Ma, H. Tan, S. Jian, Z. Lv, P. Chen, T. Zhang, H. Qi, P. Wang, W. Lu, Utilization of turmeric residue for the preparation of ceramic foam, J Clean Prod. 278 (2021) 123825. https://doi.org/10.1016/j.jclepro.2020.123825.

S. Yodkeeree, C. Ampasavate, B. Sung, B.B. Aggarwal, P. Limtrakul, Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line, Eur J Pharmacol. 627 (2010) 8–15. https://doi.org/10.1016/j.ejphar.2009.09.052.

J.H. Xu, H.P. Yang, X.D. Zhou, H.J. Wang, L. Gong, C.L. Tang, Autophagy accompanied with bisdemethoxycurcumin-induced apoptosis in non-small cell lung cancer cells, Biomedical and Environmental Sciences. 28 (2015) 105–115. https://doi.org/10.3967/bes2015.013.

H. Pei, Y. Yang, L. Cui, J. Yang, X. Li, Y. Yang, H. Duan, Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions, Sci Rep. 6 (2016). https://doi.org/10.1038/srep28773.

R. Gutiérrez Fuentes, J.F. Sánchez Ramírez, J.L. Jiménez Pérez, J.A. Pescador Rojas, E. Ramón-Gallegos, A. Cruz-Orea, Thermal Diffusivity Determination of Protoporphyrin IX Solution Mixed with Gold Metallic Nanoparticles, Int J Thermophys. 28 (2007) 1048–1055. https://doi.org/10.1007/s10765-007-0225-8.

D. Dadarlat, Photopyroelectric calorimetry of liquids; recent development and applications, Laser Phys. 19 (2009) 1330–1339. https://doi.org/10.1134/S1054660X09060255.

V.S. Raykar, A.K. Singh, Photoacoustic Method for Measurement of Thermal Effusivity of Fe 3 O 4 Nanofluid , Journal of Thermodynamics. 2011 (2011) 1–5. https://doi.org/10.1155/2011/464368.

A. Alvis, G. Arrazola, W. Martinez, Evaluación de la Actividad y el Potencial Antioxidante de Extractos Hidro-Alcohólicos de Cúrcuma (Cúrcuma longa), Información Tecnológica. 23 (2012) 11–18. https://doi.org/10.4067/S0718-07642012000200003.

R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans Magn. 17 (1981) 1247–1248. https://doi.org/10.1109/TMAG.1981.1061188.

R. Carbajal-Valdéz, A. Rodríguez-Juárez, J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, A. Cruz-Orea, Z.N. Correa-Pacheco, M. Macias, J.L. Luna-Sánchez, Experimental investigation on thermal properties of Ag nanowire nanofluids at low concentrations, Thermochim Acta. 671 (2019) 83–88. https://doi.org/10.1016/j.tca.2018.11.015.

P.M.P. D. P. Almond, Photothermal science and techniques, 1st ed., Springer Dordrecht, 1996.

J.J.A. Flores-Cuautle, A. Cruz-Orea, E. Suaste-Gómez, Thermal Effusivity of the Pb 0.88 Ln 0.08 Ti 0.98 Mn 0.02 O 3 (Ln=La, Eu) Ferroelectric Ceramic System by Inverse Photopyroelectric Technique, Ferroelectrics. 386 (2009) 36–40. https://doi.org/10.1080/00150190902961264.

A. Bejan, A.D. Kraus, Heat transfer handbook, J. Wiley, 2003.

F. Horia, K. Easawi, R. Khalil, S. Abdallah, M. El-Mansy, S. Negm, Optical and Thermophysical Characterization of Fe 3 O 4 nanoparticle, IOP Conf Ser Mater Sci Eng. 956 (2020) 012016. https://doi.org/10.1088/1757-899X/956/1/012016.

M. Abareshi, E.K. Goharshadi, S. Mojtaba Zebarjad, H. Khandan Fadafan, A. Youssefi, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids, J Magn Magn Mater. 322 (2010) 3895–3901. https://doi.org/10.1016/j.jmmm.2010.08.016.

T.K. Hong, H.S. Yang, C.J. Choi, Study of the enhanced thermal conductivity of Fe nanofluids, J Appl Phys. 97 (2005). https://doi.org/10.1063/1.1861145.

N.S. Mane, V. Hemadri, Experimental Investigation of Stability, Properties and Thermo-rheological Behaviour of Water-Based Hybrid CuO and Fe3O4 Nanofluids, Int J Thermophys. 43 (2022) 7. https://doi.org/10.1007/s10765-021-02938-2.

Z. Xia, A. Singh, W. Kiratitanavit, R. Mosurkal, J. Kumar, R. Nagarajan, Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid, Thermochim Acta. 605 (2015) 77–85. https://doi.org/10.1016/j.tca.2015.02.016.

S. Basak, A.S.M. Raja, S. Saxena, P.G. Patil, Tannin based polyphenolic bio-macromolecules: Creating a new era towards sustainable flame retardancy of polymers, Polym Degrad Stab. 189 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109603.

Downloads

Published

2024-01-03

How to Cite

[1]
M. Alvarado, “Photothermal properties of Fe3O4 nanoparticles coated with turmeric extract”, Rev. Mex. Fís., vol. 70, no. 1 Jan-Feb, pp. 011601 1–, Jan. 2024.