Discriminando superposiciones de estados coherentes mediante formas de línea
DOI:
https://doi.org/10.31349/RevMexFis.70.011302Keywords:
States Schrödinger’s cat; AC stark effect; shapes of the lines; spectral, Jaynes-Cummings modelAbstract
Este artículo investiga el efecto de niveles cercanos no resonantes en las líneas espectrales de los átomos que interactúan con un campo electromagnético. Específicamente, examinamos el efecto AC Stark que ocurre cuando la frecuencia del campo coincide con la frecuencia de transición entre dos niveles más bajos y el campo tiene un número promedio pequeño de fotones (|α| 2 < 4). Nuestra investigación demuestra que los cambios en la forma de la línea espectral se pueden utilizar para distinguir entre los estados de gato de Schrödinger con fases opuestas en π, a saber, los estados |αi + |−αi y |αi − |−αi. Descriptores: Estados gato de Schrödinger; efecto AC stark; formas de las líneas; espectrales, modelo de Jaynes-Cummings.
This article investigates the effect of near non-resonant levels on the spectral lines of atoms interacting with an electromagnetic field. Specifically, we examine the AC Stark effect that occurs when the field frequency matches the transition frequency between two lower levels and the field has a small average number of photons (|α| 2 < 4). Our research demonstrates that the changes in spectral line shape can be used to distinguish between Schrödinger cat states with opposite phases in π, namely, the states |αi + |−αi and |αi − |−αi.
References
V. Dodonov, I. Malkin, and V. Man’ko, Even and odd coherent states and excitations of a singular oscillator, Physica 72 (1974) 597, https://doi.org/10.1016/0031-8914(74)90215-8
L. Mandel, Non-Classical States of the Electromagnetic Field, Phys. Scr. 1986 (1986) 34, https://doi.org/10.1088/0031-8949/1986/T12/005
V. Buzek, A. Vidiella-Barranco, and P. L. Knight, Superpositions of coherent states: Squeezing and dissipation, Phys. Rev. A 45 (1992) 6570, https://doi.org/10.1103/PhysRevA.45.6570
H. Moya-Cessa, S. Chavez-Cerda, and J. Sánchez-Mondragón, Interaction of quantized light with a two-level atom: comparison between the Stark and Kerr effects, Phys. Lett. A 205 (1995) 51, https://doi.org/10.1016/0375-9601(95)00497-Q
B. Yurke and D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett. 57 (1986) 13, https://doi.org/10.1103/PhysRevLett.57.13
K. Wodkiewicz et al., Squeezing and superposition states, Phys. Rev. A 35 (1987) 2567, https://doi.org/10.1103/PhysRevA.35.2567
A. Vidiella-Barranco, H. Moya-Cessa, and V. Buzek, Interaction of Superpositions of Coherent States of Light with Twolevel Atoms, J. Mod. Opt. 39 (1992) 1441, https://doi.org/10.1080/09500349214551481
J. Janszky et al., Quantum-state engineering via discrete coherent-state superpositions, Phys. Rev. A 51 (1995) 4191, https://doi.org/10.1103/PhysRevA.51.4191
C. Gerry and P. Knight, Quantum superpositions and Schrödinger cat states in quantum optics, Am. J. Phys. 65 (1997) 964, https://doi.org/10.1119/1.18698
J. Recamier et al., Entanglement and generation of superpositions of atomic coherent states, Phys. Rev. A 61 (2000) 063808, https://doi.org/10.1103/PhysRevA.61.063808
J. Recamier and R. Jáuregui, Construction of even and odd combinations of Morse-like coherent states, J. opt., B Quantum semiclass. opt. 5 (2003) S365, https://doi.org/10.1088/1464-4266/5/3/371
A. Zúñiga-Segundo, Obtención de estados tipo gato de Schrödinger mediante transformaciones canónicas en el espacio fase cuántico, Rev. Mex. Fis. 49 (2003) 401
M. A. Ahmad and S.-T. Liu, Superposition of two coherent states π out of phase with average photon number as relative phase, Optik 120 (2009) 68, https://doi.org/10.1016/j.ijleo.2007.02.012
E. Jaynes and F. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51 (1963) 89, https://doi.org/10.1109/PROC.1963.1664
J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Periodic Spontaneous Collapse and Revival in a Simple Quantum Model, Phys. Rev. Lett. 44 (1980) 1323, https://doi.org/10.1103/PhysRevLett.44.1323
V. Dodonov, A. Klimov, and V. Man’ko, Generation of squeezed states in a resonator with a moving wall, Phys. Lett. A 149 (1990) 225, https://doi.org/10.1016/0375-9601(90)90333-J
H. Moya-Cessa and A. Vidiella-Barranco, Interaction of Squeezed Light with Two-level Atoms, J. Mod. Opt. 39 (1992) 2481, https://doi.org/10.1080/09500349214552511
O. de los Santos-Sánchez and J. Recamier, The f-deformed Jaynes-Cummings model and its nonlinear coherent states, J. Phys. B: At. Mol. Opt. Phys. 45 (2011) 015502, https://doi.org/10.1088/0953-4075/45/1/015502.
I. Ramos-Prieto, B. M. Rodríguez-Lara, and H. M. MoyaCessa, Engineering nonlinear coherent states as photonadded and photon-subtracted coherent states, Int. J. Quantum Inf. 12 (2014) 1560005, https://doi.org/10.1142/S0219749915600059
L. Medina-Dozal, I. Ramos-Prieto, and J. Recamier, Approximate Evolution for A Hybrid System-An Optomechanical Jaynes-Cummings Model, Entropy 22 (2020) 1373, https://doi.org/10.3390/e22121373
I. Ramos-Prieto et al., Approximate evolution for a system composed by two coupled Jaynes-Cummings Hamiltonians, Phys. Scr. 95 (2020) 034008, https://doi.org/10.1088/1402-4896/ab538b
D. Meschede, H. Walther, and G. Müller, One-Atom Maser, Phys. Rev. Lett. 54 (1985) 551, https://doi.org/10.1103/PhysRevLett.54.551
H. Moya-Cessa, V. Buzek, and P. Knight, Power broadening and shifts of micromaser lineshapes, Opt. Commun. 85 (1991) 267, https://doi.org/10.1016/0030-4018(91)90407-5
J. Bae and L.-C. Kwek, Quantum state discrimination and its applications, J. Phys. A: Math. Theor. 48 (2015) 083001, https://doi.org/10.1088/1751-8113/48/8/083001
S. M. Barnett, Quantum Limited State Discrimination, Fortschritte der Physik 49 (2001) 909, https://doi.org/10.1002/1521-3978(200110)49:10/11h909::AID-PROP909i3.0.CO;2-F
S. M. Barnett and S. Croke, Quantum state discrimination, Adv. Opt. Photon. 1 (2009) 238, https://doi.org/10.1364/AOP.1.000238
J. A. Bergou, Quantum state discrimination and selected applications, Journal of Physics: Conference Series 84 (2007) 012001, https://doi.org/10.1088/1742-6596/84/1/012001
A. Chefles, Quantum state discrimination, Contemp. Phys. 41 (2000) 401, https://doi.org/10.1080/00107510010002599
H. Moya-Cessa and A. Vidiella-Barranco, On the Interaction of Two-level Atoms with Superpositions of Coherent States of Light, J. Mod. Opt. 42 (1995) 1547, https://doi.org/10.1080/09500349514551341
L. Villanueva-Vergara, F. Soto-Eguibar, and H. M. MoyaCessa, Effect of the nearby levels on the resonance fluorescence spectrum of the atom-field interaction, Eur. Phys. J. Plus 135 (2020) 614, https://doi.org/10.1140/epjp/s13360-020-00632-0
A. B. Klimov and S. M. Chumakov, A Group-Theoretical Approach to Quantum Optics, pp. 83-112 (John Wiley & Sons, Ltd, 2009), https://doi.org/10.1002/9783527624003.ch5
R. Juárez Amaro, A. Zúñiga-Segundo, and H. Moya-Cessa, Several Ways to Solve the Jaynes-Cummings Model, App. Math. Inf. Sci. 9 (2015) 299, https://doi.org/10.12785/amis/090136
C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004), https://doi.org/10.1017/CBO9780511791239
E. Schrödinger, Die gegenwärtige Situation in der Quantenme chanik, Naturwissenschaften 23 (1935) 807, https://doi.org/10.1007/BF01491891
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Leonardi Hernández Sánchez, Irán Ramos Prieto, Francisco Soto Eguibar, Héctor Manuel Moya Cessa
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.