Comparative study of alpha scattering from various nuclei at 130 MeV: Microscopic potentials and coupled channel calculations
DOI:
https://doi.org/10.31349/RevMexFis.70.031202Keywords:
Energy density functional; single folding cluster; deformation length parameterAbstract
The angular distributions of the elastic and inelastic scattering cross sections of alpha projectiles on different heavy ion target nuclei including 12C, 16O, 24Mg, 28Si and 40Ca at energy of 130 MeV have been studied using two different microscopic real potentials generated by the energy density functional (EDF) theory, and single folding cluster model as well as phenomenological Woods-Saxon potentials. A new parameterization was considered for the first time by EDF and to make the normalization coefficient tend to unity, it is necessary to consider correction to the calculated real potential. Coupled channel calculations for various low-lying states were performed, and the best fit values for the deformation length with the above models were extracted by fitting the inelastic scattering cross section and compared to previous work values. The total reaction cross section, as well as the real and imaginary volume integrals, have been studied.
References
M. Freer, The Euroschool on Exotic Beams, Vol. IV, Lecture Notes in Physics 879, (Springer Verlag, Berlin, Heidelberg, 2014), https://10.1007/978-3-642-45141-6
J.A. Wheeler, On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure, Phys. Rev. 52 (1937) 1107, https://doi.org/10.1103/PhysRev.52.1107
D.M. Brink, The alpha-particle model of light nuclei, Proceedings of the International School of Physics, Enrico Fermi, Course XXXVI, edited by C. L. Bloch (Aca-demic press, New York, 1966) 247
B. Zhou et al., Nonlocalized cluster dynamics and nuclear molecular structure, Phys. Rev. C 89 (2014) 34319, https://doi.org/10.1103/PhysRevC.89.034319
B. Buck, A.C. Merchant, S.M. Perez,Systematics of alphacluster states above double shell closures, Phys. Rev. C 51 (1995) 559, https://doi.org/10.1103/PhysRevC.51.559
A. Tohsaki, H. Horiuchi, P. Schuck, G. Roepke,Colloquium:Status of α-particle condensate structure of the Hoyle state, Rev. Mod. Phys. 89 (2017) 11002, https://doi.org/10.1103/RevModPhys.89.011002
H. Horiuchi, K. Ikeda,A Molecule-like Structure in Atomic Nuclei of 16O∗ and 10Ne, Prog. Theor. Phys. 40 (1968) 277, https://doi.org/10.1143/PTP.41.1386
M. Freer, A.C. Merchant,Developments in the study of nuclear clustering in light even-even nuclei, J. Phys. G: Nucl. Part. Phys. 23 (1997) 261, https://doi.org/10.1088/0954-3899/23/3/002
N. Zoghi-Foumani, M.R. Shojaei, A.A. Rajabi,A new nonmicroscopic study of cluster structures in light alpha-conjugate nuclei, Chin. Phys. C 41 (2017) 14104, https://dx.doi.org/10.1088/1674-1137/41/1/014104
F. Michel, α-clustering in the ground state of 40Ca, Phys. Lett. B 60 (1976) 229, https://doi.org/10.1016/0370-2693(76)90287-2
Th. Delbar et al., Elastic and inelastic scattering of alpha particles from 40,44Ca over a broad range of energies and angles, Phys. Rev. C 18 (1978) 1237, https://doi.org/10.1103/Phys.Rev.C.18.1237
D. T. Khoa,Exchange effects in nuclear rainbow scattering, Nucl. Phys. A 484 (1988) 376, https://doi.org/10.1016/0375-9474(88)90077-2
M. EL-Azab Farid, Z. M. M. Mahmoud and G.S.Hassan,αclustering folding model, Phys.Rev.C 64 (2001)014310, https://doi.org/10.1103/PhysRevC.64.014310
M. Karakoc and I. Boztosun, α-α double folding cluster potential description of the 12C+24Mg system, Phys. Rev. C 73 (2006) 047601, https://doi.org/10.1103/PhysRevC.73.047601
M. N. A. Abdullah et al.,Cluster structure of 40,44,48Ca, Phys. Lett.B 571 (2003) 45, https://doi.org/10.1016/j.physletb.2003.08.014
A. H. Al-Ghamdi, Awad A. Ibraheem,and M.El-Azab Farid,An investigation of 4He+ 12C and 4He+ 16O reactions using the cluster model, Commun. Theor. Phys. 581 (2012) 135, https://doi.org/10.1088/0253-6102/58/1/17
P. P. Manngrd et al.,Molecular potential and elastic scattering of alpha particles by 28Si from 14 to 28 MeV, Nucl. Phys. A 504 (1989) 130, https://doi.org/10.1016/0375-9474(89)90286-8
M. M. Billah et al., Alpha – Ni optical model potentials, Nucl. Phys. A 762 (2005) 50, https://doi.org/10.1016/j.nuclphysa.2005.07.020
A. S. B. Tariq et al.,Potential description of anomalous large angle scattering of alpha particles, Phys.Rev.C 59 (1999) 2558, https://doi.org/10.1103/PhysRevC.59.2558
S. Hossain et al., Non-monotonic potential description of alpha – Zr refractive elastic scattering, J. Phys. G: Nucl. Part. Phys. 40 (2013) 105109, https://doi.org/10.1088/0954-3899/40/10/105109
M. S. Islam, M. M. Billah and A. K. Basak, Non-monotonic potential description of alpha-40Ca refractive elastic scattering, J. Phys.: Conf. Ser. 1718 (2021) 012008, https://doi.org/10.1088/1742-6596/1718/1/012008
S.Adachi et al.,Systematic analysis of inelastic α scattering off self-conjugate A= 4 n nuclei, Phys.Rev.C 97 (2018) 014601, https://doi.org/10.1103/PhysRevC.97.014601
H. Abele et al.,Measurement and folding-potential analysis of the elastic α-scattering on light nuclei, Zeitschrift fA˜ 1 4 r Physik A Atomic Nuclei 326 (1987) 373, https://doi.org/10.1007/BF01289540
H. Abele and G. Staudt,α16O and α15N optical potentials in the range between 0 and 150 MeV, Phys. Rev. C 47 (1993) 742, https://doi.org/10.1103/PhysRevC.47.742
D. T. Khoa, G. R. Satchler, W. von Oertzen, Nuclear incompressibility and density dependent interactions in the folding model for nucleus-nucleus potentials, Phys. Rev. C 56 (1997) 954, https://doi.org/10.1103/PhysRevC.56.954
M. EL-Azab Farid, Z. M. M. Mahmoud, and G. S. Hassan, Analysis of heavy ions elastic scattering using the double folding cluster model, Nucl. Phys. A 691 (2001) 671, https://doi.org/10.1016/S0375-9474(01)00587-5
T. Furumoto and Y. Sakuragi, Application of the JeukenneLejeune-Mahaux folding model to α-nucleus elastic scattering, Phys. Rev. C 74 (2006) 034606, https://doi.org/10.1103/PhysRevC.74.034606
K. O. Behairy, Z. M. M. Mahmoud, M. Anwar, α-particle elastic scattering from 12C, 16O, 24Mg, and 28Si, Nucl. Phys. A 957 (2017) 332, https://doi.org/10.1016/j.nuclphysa.2016.09.008
Z. M. M. Mahmoud and K. O. Behairy,α-Cluster Optical Potential Model of 40Ca, Braz. J. Phys. 47 (2017) 189, https://doi.org/10.1007/s13538-016-0483-7
Awad A. Ibraheem and M. Aygun, Optical model analysis of alpha particle scattering, Indian J. Phys. 95, (2021) 2437, https://doi.org/10.1007/s12648-020-01903-3
M. N. A. Abdullah et al., Cluster structure of 16O, Eur. Phys. J. A 18 (2003) 65, https://doi.org/10.1140/epja/i2002-10168-7
M. A. Hassanain, Cluster Folding Model Analysis of α-Particle Elastic Scattering by 24Mg and 28Si, Chin.J.Phys. 49 (2011) 589
Z. M. M. Mahmoud,Energy density functional for α clustering and scattering of light A= 4 m nuclei, Phys. Rev. C 105 (2022) 044609, https://doi.org/10.1103/PhysRevC.105.044609
Z. M. M. Mahmoud et al.,Analysis of alpha scattering from α-conjugate nuclei, J.Phys.Soc. Japan 88 (2019) 024201, https://doi.org/10.7566/JPSJ.88.024201
I. Reichstein, F. B. Malik, Dependence of 16O-16O potential on the density ansatz, Phys. Lett. B 37 (1971) 344, https://doi.org/10.1016/0370-2693(71)90197-3
I. Reichstein, F. B. Malik, Potential energy surfaces and lifetimes for spontaneous fission of heavy and superheavy elements from a variable density dependent mass formula, Ann. of Phys. 98 (1976) 322, https://doi.org/10.1016/0003-4916(76)90157-3
I. Reichstein and F. B. Malik, Condensed matter theories 1 (1985) 291
https://nrv.jinr.ru/nrv/webnrv/map/
M. Karakoc¸, BiFold:A Python code for the calculation of double-folded (bifold) potentials with density-in/dependent nucleon-nucleon interactions, Comput. Phys. Comm. 284 (2023) 108613, https://doi.org/10.1016/j.cpc.2022.108613
J. Cook ,DFPOT-a program for the calculation of double folded potentials, Comput. Phys. Comm.25 (1982) 125, https://doi.org/10.1016/0010-4655(82)90029-7
B. Buck, H. Friedrich and C. Wheathly, Local potential models for the scattering of complex nuclei, Nucl. Phys. A 275 (1977) 246, https://doi.org/10.1016/0375-9474(77)90287-1
N. M. Clarke, HI-OPTIM code (1994), University of Birmingham, UK (unpublished)
Sh. Hamada, Awad. A. Ibraheem, Comparative Analysis for 6 Li + 58Ni System Within the Framework of Various Nuclear Potentials, Braz.J.Phys. 29 (2022) 52, https://doi.org/10.1007/s13538-021-01035-x
I. J. Thompson,Coupled reaction channels calculations in nuclear physics, Comput. Phys. Rep. 7 (1988) 167, https://doi.org/10.1016/0167-7977(88)90005-6
S. M. Smith et al.,The and α, 3He) reactions on 12C at 139 MeV, Nucl. Phys. A 207 (1973) 273, https://doi.org/10.1016/0375-9474(73)90347-3
M. E. Brandan and K. W. McVoy, Rainbow-shift mechanism behind discrete optical-potential ambiguities, Phys. Rev. C 43 (1991) 1140, https://doi.org/10.1103/PhysRevC.43.1140
A. Kiss et al.,Inelastic scattering of 172.5 MeV α particles by 12C, J. Phys. G: Nucl. Phys. 13, (1987) 1067, https://doi.org/10.1088/0305-4616/13/8/014
K. T. Knopfle et al.,Evidence for the Isoscalar Giant Quadrupole Resonance in 16O, Phys.Rev. Lett. 35(12) (1975) 779, https://doi.org/10.1103/PhysRevLett.35.779
K. Van der Borg, M. N. Harakeh and A. Van der Woude, The isoscalar strength distribution in 24,26Mg, 28Si and 40Ca obtained from inelastic alpha scattering at 120 MeV, Nucl. Phys. A 365 (1981) 243, https://doi.org/10.1016/0375-9474(81)90297-9
D. Arani Sarker, M. D. A. Rahman and H. M. Sen Gupta, A study of scattering of alpha particles from nuclei, Int. J. of Mod. Phys. E, 19 (11) (2010) 2167, https://doi.org/10.1142/S0218301310016570
Y. Kanada-Enyo, K. Ogata,Transition properties of low-lying states in 28Si probed via inelastic proton and α-scattering, Phys. Rev. C 101 (2020) 064607 https://doi.org/10.1103/PhysRevC.101.064607
Y. Kanada-Enyo, K. Ogata,First microscopic coupled-channels calculation of cross sections for inelastic α scattering off 16O, Phys. Rev. C 99 (2019) 064608. https://doi.org/10.1103/PhysRevC.99.064608
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Awad Ibraheem, F. Alasmary, B. Alshahrani, M. Karakoç, Sh. Hamada, M. N. El-Hammamy
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.