Coherent superposition of states in degenerate systems using zero-area pulses

Authors

  • Maghsoud Saadati-Niari University of Mohaghegh Ardabili
  • M. Amiri University of Mohaghegh Ardabili

DOI:

https://doi.org/10.31349/RevMexFis.70.011303

Keywords:

Population transfer; Morris-Shore transformation; zero pulse; coherent superposition

Abstract

The coherent superposition of states in degenerate quantum systems is investigated using detuned laser pulses in which the Rabi frequencies are time-dependent, and the pulse area is zero. In this study, a quantum system with an arbitrary number of degenerate states in the ground set as well as an arbitrary number of degenerate states in the exciting set is considered. We assume that all states in the ground set are coupled to the excited states using laser pulses such that the pulse area of Rabi frequency is zero, and all of them have the same time dependence. It is also assumed that all laser pulses are in a non-resonant condition with Bohr transitions, and all detunings are the same. We will show that by applying the appropriate temporal dependence for the pulses and the appropriate rate for the detunings, the population can be transferred from an arbitrary superposition from the ground states to a desired superposition from the excited states.

References

U. Gaubatz, P. Rudecki, S. Schiemann, K. Bergmann, Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results J. Chem. Phys. 92 (1990) 5363, https://doi.org/10.1063/1.458514

N. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Coherent manipulation of atoms molecules by sequential laser pulses Adv. At. Mol. Opt. Phys. 46 (2001) 55, https://doi.org/10.1016/S1049-250X(01)80063-X

K. Bergmann, N.V. Vitanov, B.W. Shore, Perspective: Stimulated Raman adiabatic passage: The status after 25 years J. Chem. Phys. 142 (2015) 170901, https://doi.org/10.1063/1.4916903

N. V. Vitanov, A. A. Rangelov, B. W. Shore and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phy. 89 (2017) 015006, https://doi.org/10.1103/RevModPhys.89.015006

B. W. Shore, Picturing stimulated Raman adiabatic passage: a STIRAP tutorial Advances in Optics and Photonics 9 (2017) 563, https://doi.org/10.1364/AOP.9.000563

K. Bergmann et al., Roadmap on STIRAP applications J. Phys. B 52 (2019) 202001, https://dx.doi.org/10.1088/1361-6455/ab3995

L. P. Yatsenko et al., Source of metastable H (2s) atoms using the Stark chirped rapid-adiabatic-passage technique Phys. Rev. A 60 (1999) R4237, https://doi.org/10.1103/PhysRevA.60.R4237

A. A. Rangelov et al., Stark-shift-chirped rapid-adiabaticpassage technique among three states Phys. Rev. A 72 (2005) 053403, https://doi.org/10.1103/PhysRevA.72.053403

N. Shirkhanghah, M. Saadati Niari, and B. Nedaee Shakarab, Stark-shift-chirped rapid-adiabatic-passage technique in tripod systems Rev. Mex. Fis. 67.2 (2021) 180, https://doi.org/10.31349/RevMexFis.67.180

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, (Wiley, New York, 1975)

B. W. Shore, The Theory of Coherent Atomic Excitation, (Wiley, New York, 1990)

I. Thanopulos, P. Kral, M. Shapiro, and E. Paspalakis, Optical control of molecular switches J. Mod. Opt. 56 (2009) 686, https://doi.org/10.1080/09500340802326815

K. Bergmann, H. Theuer, B.W. Shore, Coherent population transfer among quantum states of atoms and molecules Rev. Mod. Phys. 70 (1998) 1003, https://doi.org/10.1103/RevModPhys.70.1003

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, Creation and measurement of a coherent superposition of quantum states Phys. Rev. Lett. 91 (2003) 213001, https://doi.org/10.1103/PhysRevLett.91.213001

T. J. Bürvenich, J. Evers, and C. H. Keitel, Nuclear Quantum Optics with X-Ray Laser Pulses, Phys. Rev. Lett. 96 (2006) 142501, https://doi.org/10.1103/PhysRevLett.96.142501

B. Nedaee-Shakarab, M. Saadati-Niari, and F. Zolfagharpour, Nuclear-state population transfer by a train of coincident pulses, Phys. Rev. C 94 (2016) 054601, https://doi.org/10.1103/PhysRevC.94.054601

B. Nedaee-Shakarab, M. Saadati-Niari, and F. Zolfagharpour, Nuclear-state engineering in tripod systems using x-ray laser pulses, Phys. Rev. C 96 (2017) 044619, https://doi.org/10.1103/PhysRevC.96.044619

B. T. Torosov, E. S. Kyoseva, N. V. Vitanov, Composite pulses for ultrabroadband and ultranarrow-band excitation, Phys. Rev. A 92 (2015) 033406, https://doi.org/10.1103/PhysRevA.92.033406

E. S. Kyoseva, N. V. Vitanov, Optimal Quantum Control by Composite Pulses, In CLEO: 2014 (Optica Publishing Group, 2014) p. JTu4A.40, https://doi.org/10.1364/CLEO-AT.2014.JTu4A.40

E. Kyoseva, N. V. Vitanov, Arbitrarily accurate passband composite pulses for dynamical suppression of amplitude noise, Phys. Rev. A 88 (2013) 063410, https://doi.org/10.1103/PhysRevA.88.063410

B. T. Torosov, N. V. Vitanov, Composite stimulated Raman adiabatic passage, Phys. Rev. A 87 (2013) 043418, https://doi.org/10.1103/PhysRevA.87.043418

S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, T. Halfmann, Highly efficient broadband conversion of light polarization by composite retarders, JOSA A 29 (2012) 265-269 https://doi.org/10.1364/JOSAA.29.000265

T. Peters et al., Variable ultrabroadband and narrowband composite polarization retarders, Applied optics 51 (2012) 7466, https://doi.org/10.1364/AO.51.007466

N. V. Vitanov, Arbitrarily accurate narrowband composite pulse sequences, Phys. Rev. A 84 (2011) 065404, https://doi.org/10.1103/PhysRevA.84.065404

B. T. Torosov, S. Guerin, N. V. Vitanov, High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses, Phys. Rev. Lett. 106 (2011) 233001, https://doi.org/10.1103/PhysRevLett.106.233001

B. T. Torosov, N. V. Vitanov, Smooth composite pulses for high-fidelity quantum information processing, Phys. Rev. A 83 (2011) 053420, https://doi.org/10.1103/PhysRevA.83.053420

G. T. Genov, B. T. Torosov, N. V. Vitanov, Optimized control of multistate quantum systems by composite pulse sequences, Phys. Rev. A 84 (2011) 063413, https://doi.org/10.1103/PhysRevA.84.063413

G. P. Djotyan et al., Creation of a coherent superposition of quantum states by a single frequency-chirped short laser pulse, JOSA B 25 (2008) 2, https://doi.org/10.1364/JOSAB.25.000166

N. Sangouard, S. Guerin, L. P. Yatsenko, and T. Halfmann, Preparation of coherent superposition in a three-state system by adiabatic passage, Phys. Rev. A 70 (2004) 013415, https://doi.org/10.1103/PhysRevA.70.013415

E. S. Kyoseva and N. V. Vitanov, Coherent pulsed excitation of degenerate multistate systems: Exact analytic solutions, Phys. Rev. A 73 (2006) 023420, https://doi.org/10.1103/PhysRevA.73.023420

M. A. Nielsen and I. Chuang, Quantum computation and quantum information (Cambridge University Press, New York, 2001)

M. Amniat-Talab, and M. Saadati-Niari, Superposition of states in multi-lambda systems via generalized pulse area method, J. Mod. Opt. 61 (2014) 10, https://doi.org/10.1080/09500340.2013.877164

M. Saadati-Niari, and M. Amniat-Talab, Creation of coherent superposition of states in N-pod systems by a train of coincident pulses, J. Mod. Opt. 61 (2014) 18, https://doi.org/10.1080/09500340.2014.942404

M. Saadati-Niari, Coherent superpositions of states in coupled Hilbert-space using step by step Morris-Shore transformation, Ann. Phys. 372 (2016) 138, https://doi.org/10.1016/j.aop.2016.04.023

S. Mirza-Zadeh, M. Saadati-Niari, and M. Amniat-Talab, Coherent superposition of states in N-pod systems by hyperbolictangent coincident pulses, LaserPhys. Lett. 15 (2018) 095105, https://doi.org/10.1088/1612-202X/aacfaa

J. A. Vatikus, and A. D. Greentree, Digital three-state adiabatic passage, Phys. Rev. A 87 (2013) 063820, https://doi.org/10.1103/PhysRevA.87.063820

N. Irani, M. Saadati-Niari, and M. Amniat-Talab, Digital adiabatic passage in multistate systems, Physica Scripta. 95 (2020) 035109, https://doi.org/10.1088/1402-4896/ab4411

D. G. Baranov, A. P. Vinogradov, and A. A. Lisyansky, Abrupt Rabi oscillations in a superoscillating electric field, Opt. Lett. 39 (2014) 6316, https://doi.org/10.1364/OL.39.006316

G. S. Vasilev and N. V. Vitanov, Complete population transfer by a zero-area pulse, Phys. Rev. A 73 (2006) 023416, https://doi.org/10.1103/PhysRevA.73.023416

W. Bruce, Shore, Manipulating Quantum Structures Using Laser Pulses Cambridge University Press, New York, 2011

R.-H. He, R. Wang, F.-H. Ren, L.-C. Zhang, and Z.-M. Wang, Adiabatic speedup in cutting a spin chain via zero-area pulse control, Phys. Rev. A 103 (2021) 052606, https://doi.org/10.1103/PhysRevA.103.052606

H.-gyeol Lee, Y. Song, H. Kim, H. Jo, and J. Ahn, Quantum dynamics of a two-state system induced by a chirped zero-area pulse, Phys. Rev. A 93 (2016) 023423, https://doi.org/10.1103/PhysRevA.93.023423

J. M. S. Lehto and K.-A. Suominen, Time-dependent two-level models and zero-area pulses, Physica Scripta 91 (2015) 013005 https://doi.org/10.1088/0031-8949/91/1/013005

M. Lipka, and M. Parniak, Single-Photon Hologram of a ZeroArea Pulse, Phys. Rev. Lett 127 (2021) 163601, https://doi.org/10.1103/PhysRevLett.127.163601

Yi-Chao Li, D. Martınez-Cercos, S. Martınez-Garaot, Xi Chen, and J. G. Muga, Hamiltonian design to prepare arbitrary states of four-level systems, Phys. Rev. A 97 (2018) 013830, https://doi.org/10.1103/PhysRevA.97.013830

B.-Q. Ou, L.-M. Liang, C.-Z. Li, Quantum coherence effects in a four-level diamond-shape atomic system, Opt. Commun 282 (2009) 2870, https://doi.org/10.1016/j.optcom.2009.03.034

G. Grynberg and P. R. Berman, Pressure-induced extra resonances in nonlinear spectroscopy, Phys. Rev. A 41 (1990) 2677, https://doi.org/10.1103/PhysRevA.41.2677

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature, Phys. Rev. Lett82 (1999) 1116, https://doi.org/10.1103/PhysRevLett.82.1116

H. Suchowski, Y. Silberberg, and D. B. Uskov, Pythagorean coupling: Complete population transfer in a four-state system, Phys. Rev. A 84 (2011) 013414, https://doi.org/10.1103/PhysRevA.84.013414

J. R. Morris and B. W. Shore, Reduction of degenerate two-level excitation to independent two-state systems, Phys. Rev. A 27 (1983) 906, https://doi.org/10.1103/PhysRevA.27.906

A.A. Rangelov, N. V. Vitanov, and B. W. Shore, Extension of the Morris-Shore transformation to multilevel ladders, Phys. Rev. A 74 (2006) 053402, https://doi.org/10.1103/PhysRevA.74.053402

B. W. Shore, Two-state behavior in N-state quantum systems: The Morris-Shore transformation reviewed, J. Mod. Opt. 61 (2014) 787, https://doi.org/10.1080/09500340.2013.837205

B. Militello, Degenerate Landau-Zener model in the presence of quantum noise, Int. J. Quantum Inform. 17 (2019) 1950049, https://doi.org/10.1142/S0219749919500497

W. T. Liao, A. Palffy, and C. H. Keitel, Nuclear coherent population transfer with X-ray laser pulses, Phys. Lett. B 705 (2011) 134, https://doi.org/10.1016/j.physletb.2011.09.107

W. T. Liao, A. Palffy, and C.H. Keitel, Three-beam setup for coherently controlling nuclear-state population, Phys. Rev. C 87 (2013) 054609 https://doi.org/10.1103/PhysRevC.87.054609

N. Mansourzadeh-Ashkani, M. Saadati-Niari, F. Zolfagharpour, and B. Nedaee-Shakarab, Nuclear-state population transfer using composite stimulated Raman adiabatic passage, Nuclear Physics A 1007 (2021) 122119, https://doi.org/10.1016/j.nuclphysa.2020.122119

N. Mansourzadeh-Ashkani, M. Saadati-Niari, F. Zolfagharpour, and B., Nedaee-Shakarab, Superposition of nuclear states in multi-lambda systems using x-ray laser pulses, J. Phys. G: Nucl. Part. Phys. 49 (2021) 015103, https://doi.org/10.1088/1361-6471/ac3630

Downloads

Published

2024-01-03

How to Cite

[1]
M. Saadati-Niari and M. Amiri, “Coherent superposition of states in degenerate systems using zero-area pulses”, Rev. Mex. Fís., vol. 70, no. 1 Jan-Feb, pp. 011303 1–, Jan. 2024.