Resonant scattering by a loop: the Wigner delay time and Poisson’s kernel


  • Javier Ruíz-Rubio Universidad Autónoma Metropolitana
  • Moisés Martínez-Mares Universidad Autónoma Metropolitana
  • Eleuterio Castaño Universidad Autónoma Metropolitana



Resonant scattering; Aharonov-Bohm; Poisson kernel; Wigner delay time


The resonances of a loop pierced by a magnetic field are analized in terms of the scattering matrix phase, the Wigner delay time and its relation to Poisson’s kernel. Except for specific values of the magnetic flux, the resonances appear overlapped by pairs due to the broken degeneracy. Although it is well known that the Poisson kernel describes how the phase is distributed in the Argand plane, we demonstrate that Poisson’s kernel coincides with the reciprocal of the Wigner delay time, thus providing a novel interpretation of this quantity. The distribution of the Wigner delay time is also determined, it exhibits explicitly the effect of the magnetic flux, contrary to what happens to the distribution of the phase.


R.G. Newton, Scattering theory of waves and particles, 1st ed. (McGraw-Hill, New York, NY, 1966)

E. Akkermans, A. Auerbach, J.E. Avron, and B. Shapiro, Relation between Persistent Currents and the Scattering Matrix, Phys. Rev. Lett. 66 (1991) 76

P.A. Mello, Scattering approach to persistent currents in infinitely extended quantum systems, Phys. Rev. B 47 (1993) 16358

P. Exner, Magnetoresonances on a Lasso Graph, Found. Phys. 27 (1997) 171

M. Büttiker, Small normal-metal loop coupled to an electron reservoir, Phys. Rev. B 32 (1985) 1846

H. Bluhm, N.C. Koshnick, J.A. Bert, M.E. Huber, and K.A. Moler, Persistent currents in normal metal rings, Phys. Rev. Lett. 102 (2009) 136802

A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, and P.M. Petroff, Spectroscopy of Nanoscopic Semiconductor Rings, Phys. Rev. Lett. 84 (2000) 2223

M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel, Optical Detection of the AharonovBohm Effect on a Charged Particle in a Nanoscale Quantum Ring, Phys. Rev. Lett. 90 (2003) 186801

P. Recher, B. Trauzettel, A. Rycerz, Ya.M. Blanter, C.W.J. Beenakker, and A.F. Morpurgo, Aharonov-Bohm effect and broken valley degeneracy in graphene rings, Phys. Rev. B 76 (2007) 235404

C.J. Lambert, Basic concepts of quantum interference and electron transport in single-molecule electronics, Chem. Soc. Rev. 44 (2015) 875

P.A. Mello and N. Kumar, Quantum transport in mesoscopic systems: Complexity and statistical fluctuations (Oxford University Press: New York, NY, 2005) pp. 244-252

V. Vargiamidis and V. Fessatidis, Density of states and Friedel sum rule in one- and quasi-one-dimensional wires, Phys. Lett. A 374 (2010) 4438

C. Texier, Wigner time delay and related concepts: Application to transport in coherent conductors, Physica E 82 (2016) 16

A.M. Martínez-Argüello, M. Martínez-Mares, M., and J.C. García, Joint moments of proper delay times, J. Math. Phys. 55 (2014) 081901

E.P. Wigner, Lower Limit for the Energy Derivative of the Scattering Phase Shift, Phys. Rev. 98 (1955) 145

H. Feshbach, C.E.Porter, and V.F. Weisskopf, Model for Nuclear Reactions with Neutrons, Phys. Rev. 96 (1954) 448

H. Feshbach, Topics in the theory of nuclear reactions, in Reaction Dynamics, edited by E.W. Montroll, G.H. Vineyard, M. Levy, and P.T. Matthews, (Gordon and Breach: New York, NY, 1973) pp. 32-58

G. López, P.A. Mello, and T.H. Seligman, The statistical distribution of the S-matrix in the one-channel case, Z. Phys. A 302 (1981) 351

A.M. Martínez-Argüello, R.A. Méndez-Sánchez, and M. Martínez-Mares, Wave systems with direct processes and localized losses or gains: The nonunitary Poisson kernel, Phys. Rev. E 86 (2012) 016207

V. Domínguez-Rocha, R.A. Méndez-Sánchez, M. Martínez Mares, and A. Robledo, Invariant density of intermittent nonlinear maps descriptive of coherent quantum transport through disorderless lattices, Physica D 412 (2020) 132623

A.M. Martínez-Argüello, V. Domínguez-Rocha, R.A. Méndez-Sánchez, and M. Martínez-Mares, Experimental validation of the theoretical prediction for the optical S matrix, Phys. Rev. B 101 (2020) 214112

P.W. Brouwer, Generalized circular ensemble of scattering matrices for a chaotic cavity with nonideal leads, Phys. Rev. B 51 (1995) 16878

U. Kuhl, M. Martínez-Mares, R.A. Méndez-Sánchez, H.-J. Stöckmann, Direct Processes in Chaotic Microwave Cavities in the Presence of Absorption, Phys. Rev. Lett. 94 (2005) 144101

M. Büttiker, Y. Imry, M. Ya. Azbel, Quantum oscillations in one-dimensional normal-metal rings, Phys. Rev. A 30 (1984) 1982

D.K. Ferry, S.M. Goodnick, and J. Bird, Transport in Nanostructures (Cambridge University Press, New York, NY, 2009) p. 236

Y.B. Band and Y. Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science (Oxford: Academic Press, 2013) p. 439

A.M. Martínez-Argüello, M. Martínez-Mares, M. Cobian-Suárez, G. Báez, R.A. Méndez-Sánchez, A new Fano resonance in measurement processes, EPL 110 (2015), 54003




How to Cite

J. Ruíz-Rubio, M. Martínez-Mares, and E. Castaño, “Resonant scattering by a loop: the Wigner delay time and Poisson’s kernel”, Rev. Mex. Fís., vol. 70, no. 1 Jan-Feb, pp. 011602 1–, Jan. 2024.