Medición directa de la polarización de la luz
DOI:
https://doi.org/10.31349/RevMexFis.70.031304Keywords:
Polarization; Poincare sphere; Stokes parameters; extremalsAbstract
El estado de polarización de la luz normalmente se mide determinando los parámetros de Stokes. Varios autores han propuesto formas alternativas de obtener estos parámetros. Sin embargo, la esencia del método ha prevalecido. En este trabajo se propone un método de extremos, que consiste en medir intensidades máximas y mínimas. El procedimiento consta de cuatro medidas directas para obtener el estado de polarización de la luz, sin necesidad de utilizar los parámetros de Stokes. Se ofrece una representación matemática alternativa de la polarización elíptica, basada en parámetros que representan directamente la inclinación de la elipse y la relación entre sus semiejes. Se muestran resultados experimentales que se comparan favorablemente con el método tradicional.The polarization state of light is normally measured by determining the Stokes parameters. Several authors have proposed alternative ways to obtain these parameters. However the essence of the method has prevailed. In this work, a method of extremes is proposed, which consists of measuring maximum and minimum intensities. The procedure consists of four direct measurements to obtain the polarization state of the light, without the need to use the Stokes parameters. An alternative mathematical representation of the elliptical polarization is offered, based on parameters that directly represent the inclination of the ellipse and the relationship between its semi-axes. Experimental results that compare favorably with the traditional method are shown.
References
M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambrigde University Press, Cambridge, 1999), pp. 619–632
W. Shurcliff, Polarized Light (Harvard University Press, Cambridge. MA, 1962)
M. Chekhva and P. Banzer, Polarization of Light: In Classical, Quantum, and Nonlinear Optics, 1st ed. (De Gruyter, Berlin, Boston, 2021)
D. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2011)
D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy, 1st ed. (Cademix Press, Inc. Harcourt Brace Jovanovich, Publishers, 1990)
K. Iizika, Elements of Photonics, 1st ed. (A John Wiley & Songs, Inc,. Publication, 2002)
Z. Rodríguez, A. Acosta, and P. Contreras, Parametros de Stokes para haces reflejados y transmitidos en una frontera interdielectrica: una práctica de laboratorio, Rev. Mex. Fis. 39 (1992) 280 https://rmf.smf.mx/ojs/index.php/rmf/article/view/2323
Z.-C. Ren et al., Full Stokes Polarization Imaging Based on Broadband Liquid Crystal Polarization Gratings, Opt. Express 13 (2023), https://doi.org/10.3390/cryst13010038
Y. Wang et al., Principle and Implementation of Stokes Vector Polarization Imaging Technology, Applied Sciences 12 (2022), https://doi.org/10.3390/app12136613
D. Malacara, Optica básica, 3rd ed. (Fondo de Cultura Económica, 2015)
L. Zhu, A. Wang, and J. Wang, Free-space datacarrying bendable light communications, Scientific Reports 9 (2019) 14969, https://doi.org/10.1038/s41598-019-51496-z
X. Liang et al., Chiroptical interactions between an achiral Tshaped gold nanoparticle and chiral media in the strong coupling regime, Optics Communications (2023) 129726, https://doi.org/10.1016/j.optcom.2023.129726
D. Sun, 2 - Cell manipulation tools, In D. Sun, ed., Robotic Cell Manipulation, pp. 17–49 (Academic Press, 2022), https://doi.org/10.1016/B978-0-323-85259-3.00014-3
J. Liu et al., Multidimensional entanglement transport through single-mode fiber, Science Advances 6 (2020) eaay0837, https://www.science.org/doi/abs/10.1126/sciadv.aay0837
S. Wang and W. Guo, Chapter 5 - Structural effect of rock blocks, In S. Wang et al., eds., Scale-Size and Structural Effects of Rock Materials, Woodhead Publishing Series in Civil and Structural Engineering, pp. 495–633 (Woodhead Publishing, 2020), https://doi.org/10.1016/B978-0-12-820031-5.00005-9
B. Yang, Chapter 6 - Static analysis of constrained multispan beams, In B. Yang, ed., Stress, Strain, and Structural Dynamics (Second Edition), second edition ed., pp. 183–223 (Academic Press, 2023), https://doi.org/10.1016/B978-0-12-818563-6.00018-3
M. Fernández-Guasti, Vector wave solutions in electrodynamics: the Heaviside-Larmor symmetry and tiered potential invariance, Phys. Scr. 98 (2023) 105511, https://dx.doi.org/10.1088/1402-4896/acf4cc
Z.-C. Ren et al., Generalized Poincaré, Opt. Express 23 (2015) 26586, https://doi.org/10.1364/OE.23.026586
Y. Xunong et al., Hybrid-order Poincaré sphere, Phys. Rev. A 91 (2015) 023801, https://doi.org/10.1103/PhysRevA.91.023801
R. A. Silverman, Modern calculus and analytic geometry (New York : Macmillan, 1969)
M. Fernández-Guasti, Helicity continuity equiation for electromagnetic field with sources, Journal of Modern Optics 66 (2019) 1265, https://doi.org/10.1080/09500340.2019.1613578
M. Fernández-Guasti, Tiered structure and symmetry of the electromagnetic equations, Journal of Modern Optics 68 (2021) 1265, https://doi.org/10.1080/09500340.2021.1979117
P. C. Logofatu, Simple method for determining the fast axis of a wave plate, Optical Engineering 41 (2002), https://doi.org/10.1117/1.1519242
J. M. López-Téllez, N. C. Bruce, and O. G. Rodríıguez Herrera, Characterization of optical polarization properties for liquid crystal-based retarders., Applied optics 55 (2016) 6025, https://doi.org/10.1364/AO.55.006025
G. Milione et al., Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light, Phys. Rev. Lett. 107 (2011) 053601, https://doi.org/10.1103/PhysRevLett.107.053601
N. C. López-Téllez, J. M. Bruce, Stokes polarimetry using analysis of the nonlinear voltage-retardance relationship for liquid-crystal variable retarders., The Review of scientific instruments 85 (2014) 033104, https://doi.org/10.1063/1.4867458
M. Padgett and, R. Bowman, Tweezers with a twist, Nature Photonics 5 (2011) 343-348, https://doi.org/10.1038/nphoton.2011.81
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jesús Feliciano Zenón, Manuel Fernández-Guasti
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.