Comparison of energy-dependent and independent interactions-a case study


  • B. Swain National Institute of Technology Jamshedpur
  • S. Laha National Institute of Technology Jamshedpur
  • U. Laha National Institute of Technology Jamshedpur
  • B. Khirali National Institute of Technology Jamshedpur



Graz separable potential, equivalent energy-dependent interaction, phase function method, scattering phase shifts


In the present text we construct velocity-dependent or equivalently energy-dependent potential (EDP) to an energy-independent nonlocal potential (EIP) of rank-1 by Taylor series method. The phase shifts for the nucleon-nucleon and alpha-nucleon systems are computed for these two potentials by exploiting the variable phase method and the Fredholm determinant, respectively. The velocity-dependent potential is found to be superior to central nonlocal interaction in generating the scattering phase shifts up to high energy region.


Y. Yamaguchi, Two-Nucleon Problem When the Potential Is Nonlocal but Separable. I. Phys. Rev., 95 (1954) 1628.

U. Laha, Off-shell Jost solution for a Coulomb-like potential, Phys. Rev. A, 74 (2006) 012710.

H. van Haeringen: Charged Particle Interactions- Theory and Formulas, (The Coulomb Press, Leyden, 1985)

U. Laha: Coulomb-modified Nuclear Scattering-off the energy shell, Lambert Academic Publishing, (Saarbrucken, 2010)

U. Laha and J. Bhoi: Hadron-hadron scattering within the separable model of Interactions, Scholars’ (Press, Beau Bassin, 2018)

U. Laha and J. Bhoi, Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves, J. Math. Phys., 54 (2013) 013514.

B. Talukdar, U. Laha and T. Sasakawa, Green’s function for motion in Coulomb- modified separable nonlocal Potentials, J. Math. Phys., 27 (1986) 2080-2086.

M. Coz, L. G. Arnold and A. D. MacKellar. Nonlocal potentials and their local equivalents. Ann. Phys., 59 (1970), 219-247.

L. G. Arnold, A. D. MacKellar. Study of Equivalent Local Potentials Obtained from Separable Two-Nucleon Interactions. Phys. Rev. C, 3 (1971), 1095-1103.

J. P. McTavish. Separable potentials and their momentumenergy dependence. J. Phys. G Nucl. Part. Phys., 8 (1982), 1037-1048.

B. Talukdar, G. C. Sett, S. R. Bhattaru. On the localisation of separable non-local potentials. J. Phys. G Nucl. Part. Phys., 11 (1985), 591-602.

G. C. Sett, U. Laha and B. Talukdar: Equivalent potentials for a nonsymmetric non- local interaction. Pramana-J Phys., 28 (1987) 325-334.

A. K. Behera and U. Laha, Phase equivalent Coulomb-like potential, Pramana J. Phys., 95 (2021) 103.

A. K. Behera, U. Laha and J. Bhoi, Generating velocitydependent potential in all partial Waves, Turk. J Phys., 44 (2020) 229-238. https://doi.10.3906/fiz-1909-16

A. K. Behera, B. Khirali, U. Laha and J. Bhoi, Construction of an equivalent energy- dependent potential by a Taylor series expansion, Theor. Math. Phys., 205 (2020) 1353.

A K Behera, U Laha, M Majumder and J Bhoi, Applicability of Phase-Equivalent Energy-Dependent Potential. Case Studies, Phys. Atom Nuclei., 85 (2022) 124. https://doi.10.1134/S1063778822010057

C. V. Sukumar, Supersymmetric quantum mechanics of onedimensional systems, J.Phys. A: Math. Gen., 18 (1985) 2917.

C. V. Sukumar, Supersymmetric quantum mechanics and the inverse scattering method, J. Phys. A: Math Gen., 18 (1985) 2937.

D. Baye, Supersymmetry between deep and shallow nucleusnucleus potentials, Phys. Rev. Lett., 58 (1987) 2738.

U. Laha, C. Bhattacharyya, K. Roy and B. Talukdar, Hamiltonian hierarchy and the Hulthen potential, Phys. Rev. C, 38 (1988) 558.

A. Khare and U. Sukhatme, Phase-equivalent potentials obtained from supersymmetry, J. Phys. A: Math. Gen., 22 (1989) 2847.

B. Talukdar, U. Das, C. Bhattacharyya and P. K. Bera, Phaseequivalent potentials from supersymmetric quantum mechanics, J. Phys. A: Math. Gen., 25 (1992) 4073.

U. Laha and J. Bhoi, On the nucleon-nucleon scattering phase shifts through supersymmetry and factorization, Pramana - J. Phys., 81 (2013) 959.

J. Bhoi and U. Laha, Hamiltonian hierarchy and n-p scattering, J. Phys. G: Nucl. Part, 40 (2013) 045107.

U. Laha and J. Bhoi, Higher partial-wave potentials from supersymmetry-inspired factorization and nucleon-nucleus elastic scattering, Phys. Rev. C, 91 (2015) 034614, https://doi.10.1103/PhysRevC.91.034614

J. Bhoi, U. Laha and K. C. Panda, Nucleon-nucleon scattering in the light of supersymmetric quantum mechanics, Pramana - J. Phys., 82 (2014) 859-865.

U. Laha and J. Bhoi, Hulthen potential models for α − α and α-He3 elastic scattering, Pramana - J. Phys., 88 (2017) 42.

S. Panda, U. Laha, B. Kundu and J. Bhoi, Int. J. Computer Math. Sc., 7 (2018) 163. 29. E.Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B, 188 (1981) 513-554.

F. Cooper and B. Freedman, Aspects of supersymmetric quantum mechanics, Ann. Phys., 146 (1983) 262-288.

J. Garcia-Martinez, J. Garcıa-Ravelo, J. J. Peña and A. Schulze-Halberg, Exactly solvable energy-dependent potentials, Phys. Lett. A, 373 (2009) 3619-3623.

H. Hassanabadi, S. Zarrinkamar and A. A. Rajabi, Exact Solutions of D-Dimensional Schrödinger Equation for an Energy-Dependent Potential by NU Method, Commun. Theor. Phys., 55 (2011) 541-544.

R. J. Lombard, J. Mares and C. Volpe, Wave equation with energy-dependent potentials, J. Phys. G: Nucl. Part. Phys., 34 (2007) 1879.

M. Majumder and U. Laha, Phase-equivalent potentials using SUSY transformations, Pramana-J Phys., 96 (2022) 145.

B. H. J. McKellar and R. M. May, Theory of low energy scattering by velocity dependent potentials, Nucl. Phys., 65 (1965) 289-293.

R. A. Arndt, L. D. Roper, R. A. Bryan, R. B. Clark, B. J. Ver West, and P. Signell, Nucleon-nucleon partial-wave analysis to 1 GeV, Phys. Rev. D, 28 (1983) 97-122.

R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, Updated analysis of NN elastic scattering to 3 GeV, Phys. Rev. C, 76 (2007) 025209.

R. N. Perez, J. E. Amaro and E. R. Arriola, The lowenergy structure of the nucleon-nucleon interaction: statistical versus systematic uncertainties, Jour. Phys. G: Nucl. Part. Phys., 43 (2016) 114001.

G. R. Satchler, L. W. Owen, A. J. Elwin, G. L. Morgan, and R. L. Walter, An optical model for the scattering of nucleons from 4He at energies below 20 MeV, Nucl. Phys. A, 112 (1968) 1-31.

M. Majumder, U. Laha and B. Swain. Alpha-Nucleon Scattering by Extended Hulthen Potential, Indian J. Pure Appl. Phys., 60 (2022) 307.

L. Kumar, S. Awasthi, A. Khachi, O.S.K.S. Sastri. Phase Shift Analysis of Light Nucleon-Nucleus Elastic Scattering using Reference Potential Approach, arXiv:2209.00951 [nucl-th].

S Quaglioni and P Navr til, Ab initio many-body calculations of nucleon-nucleus scattering. Phys. Rev. C, 79 (2009) 044606.

L. Chew-Lean and D. Robson, Separable potential approach in the folding model. Nucl. Phys. A, 379 (1982) 11.

U. Laha, B. J. Roy, and B. Talukdar, Transforms of the Coulomb Green function by the form factor of the Graz potential, J. Phys. A: Math. Gen., 22 (1989) 3597-3604.

B. Talukdar, U. Laha, and S. R. Bhattaru, Double Laplace transform of the Coulomb Green function, J. Phys. A: Math. Gen., 18 (1985) L359-L362.




How to Cite

B. Swain, S. Laha, U. Laha, and B. Khirali, “Comparison of energy-dependent and independent interactions-a case study”, Rev. Mex. Fís., vol. 70, no. 4 Jul-Aug, pp. 041201 1–, Jul. 2024.