PDM-Coulombic effects of non-inertial cosmic string on a Klein-Gordon oscillator
DOI:
https://doi.org/10.31349/RevMexFis.70.050802Keywords:
Non-inertial cosmic string; Klein-Gordon oscillatorAbstract
This paper addresses the problem of a three-dimensional Klein-Gordon oscillator with position-dependent mass in a non-inertial cosmic string background. We provide solutions to this problem and analyze the eigensolutions, considering the influence of non-inertial effects and the presence of position-dependent mass (PDM) on the eigenvalues. Expressions are obtained for the bound state energies and wave functions.
References
T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A: Math. Gen. 9 (1976) 1387, https://doi.org/10.1088/0305-4470/9/8/029
A. Vilenkin, Cosmic strings and domain walls Phys. Rep. 121 (1985) 263, https://doi.org/10.1016/0370-1573(85)90033-X
K. D. Krori, P. Borgohain, and D. Das, Exact scalar and spinor solutions in the field of a stationary cosmic string, J. Math. Phys. 35 (1994) 1032, https://doi.org/10.1063/1.530649
K. Bakke, Bound states for a neutral particle analogous to a quantum dot induced by the non-inertial effects of the Fermi-Walker reference frame, Phys. Lett. A 374 (2010) 3143, https://doi.org/10.1016/j.physleta.2010.05.049
J. Carvalho, C. Furtado, F. Moraes, Dirac oscillator interacting with a topological defect, Phys. Rev. A 84 (2011) 032109, https://doi.org/10.1103/PhysRevA.84.032109
K. Bakke, C. Furtado, On the interaction of the Dirac oscillator with the Aharonov-Casher system in topological defect backgrounds, Ann. Phys. 336 (2013) 489, https://doi.org/10.1016/j.aop.2013.06.007
F. M. Andrade, E. O. Silva, Effects of spin on the dynamics of the 2D Dirac oscillator in the magnetic cosmic string background, Eur. Phys. J. C 74 (2014) 3187, https://doi.org/10.1140/epjc/s10052-014-3187-6
K. Bakke, C. Furtado, Persistent currents for a moving neutral particle with no permanent electric dipole moment, Eur. Phys. J. B 87 (2014) 222, https://doi.org/10.1140/epjb/e2014-50106-5
A. Boumali, N. Messai, Klein-Gordon oscillator under a uniform magnetic field in cosmic string space-time, Can. J. Phys. 92 (2014) 11, https://doi.org/10.1139/cjp-2013-0431
A. Boumali and H. Aounallah, Exact Solutions of Scalar Bosons in the Presence of the Aharonov-Bohm and Coulomb Potentials in the Gravitational Field of Topological Defects, Advances in High Energy Physics 2018 (2018) 1031763, https://doi.org/10.1155/2018/1031763
H. Aounallah, A. Boumali, Solutions of the Duffin-Kemmer Equation in Non-Commutative Space of Cosmic String and Magnetic Monopole with Allowance for the Aharonov-Bohm and Coulomb Potentials, Phys. Part. Nuclei Lett. 16 (2019) 195, https://doi.org/10.1134/S1547477119030038
A. Boumali and H. Aounallah, Exact solutions of vector bosons in the presence of the Aharonov-Bohm and Coulomb potentials in the gravitational field of topological defects in non-commutative space-time, Rev. Mex. Fis. 66 (2020) 192, https://doi.org/10.31349/revmexfis.66.192
K. Bakke, C. Furtado, On the Klein-Gordon oscillator subject to a Coulomb-type potential, Ann. Phys. 355 (2015) 48, https://doi.org/10.1016/j.aop.2015.01.028
N. Messai , A. Boumali, Exact solutions of a two-dimensional Kemmer oscillator in the gravitational field of cosmic string, Eur. Phys. J. Plus 130 (2015) 140, https://doi.org/10.1140/epjp/i2015-15140-3
L. B. Castro, Quantum dynamics of scalar bosons in a cosmic string background, Eur. Phys. J. C 75 (2015) 287, https://doi.org/10.1140/epjc/s10052-015-3507-5
A. Boumali, N. Messai, Exact solutions of a two-dimensional Duffin-Kemmer-Petiau oscillator subject to a Coulomb potential in the gravitational field of cosmic string, Can. J. Phys., 95 (2017) 999, https://doi.org/10.1139/cjp-2016-0800
A. Vilenkin, Cosmological Density Fluctuations Produced by Vacuum Strings, Phys. Rev. Lett. 46 (1981) 1169, https://doi.org/10.1103/PhysRevLett.46.1169
M. Moshinsky and A. Szczepaniak, The Dirac oscillator, J. Phys. A: Math. Gen. 22 (1989) L817, https://doi.org/10.1088/0305-4470/22/17/002
M. Moshinsky , G. Loyola, and C. Villegas, Anomalous basis for representations of the Poincar’e group, J. Math. Phys. 32 (1991) 373, https://doi.org/10.1063/1.529422
A. Bermudez, M. A. Martin Delgedo, and A. Luis, Chirality quantum phase transition in the Dirac oscillator, Phys. Rev. A 77 (2008) 063815, https://doi.org/10.1103/PhysRevA.77.063815
A. Boumali and H. Hassanabadi, The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field, Eur. Phys. J. Plus 128 (2013) 124, https://doi.org/10.1140/epjp/i2013-13124-y
M. Hosseinpour and H Hassanabadi, DKP equation in a rotating frame with magnetic cosmic string background, Eur. Phys. J. Plus 130 (2015) 236, https://doi.org/10.1140/epjp/i2015-15236-8
K Bakke, Rotating effects on the Dirac oscillator in the cosmic string spacetime, Gen. Relativ. Grav. 45 (2013) 1847, https://doi.org/10.1007/s10714-013-1561-6
H. F. Mota and K. Bakke, Noninertial effects on nonrelativistic topological quantum scattering, Gen. Relativ. Grav. 49 (2017) 104, https://doi.org/10.1007/s10714-017-2266-z
L. C. N. Santos and C. C. Barros, Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime, Eur. Phys. J. C 78 (2018) 13, https://doi.org/10.1140/epjc/s10052-017-5476-3
F. Ahmed, Aharonov-Bohm and non-inertial effects on a Klein-Gordon oscillator with potential in the cosmic string space-time with a spacelike dislocation, Chin. J. Phys. 66 (2020) 587, https://doi.org/10.1016/j.cjph.2020.06.012
S. Zare, H. Hassanabadi and Marc de Montigny, Non-inertial effects on a generalized DKP oscillator in a cosmic string space-time, Gen. Relat. Grav. 52 (2020) 25, https://doi.org/10.1007/s10714-020-02676-0
L. C. N. Santos, F. M. da Silva, C. E. Mota and V. B. Bezerra, Noninertial effects on a non-relativistic quantum harmonic oscillator in the presence of a screw dislocation, Int. J. Geom. Methods Mod. Phys. 20 (2023) 2350067, https://doi.org/10.1142/S0219887823500676
R. R. Cuzinatto, Marc de Montigny and Pedro José Pompeia, Noncommutativity and non-inertial effects on a scalar field in a cosmic string spacetime: II. Spin-zero Duffin-Kemmer-Petiaulike oscillator, Class. Quantum Gravity 39 (2022) 075007, https://doi.org/10.1088/1361-6382/ac51bc
F. Ahmed, Non-inertial effects on Klein-Gordon oscillator under a scalar potential using the Kaluza-Klein theory, Pramana - J. Phys. 95 (2021) 159, https://doi.org/10.1007/s12043-021-02193-y
L. C. N. Santos , F. M. da Silva , C. E. Mota and V. B. Bezerra, Some remarks on scalar particles under the influence of noninertial effects in a spacetime with a screw dislocation, Eur. Phys. J. Plus 138 (2023) 174, https://doi.org/10.1140/epjp/s13360-023-03783-y
K. D. Krori, P. Borgohain, P. K. Kar, and D. Das, Exact scalar and spinor solutions in some rotating universes, J. Math. Phys. 29 (1988) 1645, https://doi.org/10.1063/1.527912
K. D. Krori, P. Borgohain, and D. Das. J. Math. Phys. 35, 1032 (1994)
A. Bouzenada and A. Boumali, Statistical properties of the two dimensional Feshbach-Villars oscillator (FVO) in the rotating cosmic string space-time, Ann. Physics 452 (2023) 169302, https://doi.org/10.1016/j.aop.2023.169302
A. Vilenkin, Phys. Rep. 121 (1985) 263. 36. K. Bakke, Noninertial effects on the Dirac oscillator in a topological defect spacetime, Eur. Phys. J. Plus 127 (2012) 82, https://doi.org/10.1140/epjp/i2012-12082-2
K. Bakke, C. Furtado, Anandan quantum phase for a neutral particle with Fermi-Walker reference frame in the cosmic string background, Eur. Phys. J. C 69 (2010) 531, https://doi.org/10.1140/epjc/s10052-010-1431-2
K. Bakke, C. Furtado, Geometric phase for a neutral particle in rotating frames in a cosmic string spacetime, Phys. Rev. D 80 (2009) 024033, https://doi.org/10.1103/PhysRevD.80.024033
K. Bakke, C. Furtado, Bound states for neutral particles in a rotating frame in the cosmic string spacetime, Phys. Rev. D 82 (2010) 084025, https://doi.org/10.1103/PhysRevD.82.084025
T. W. B. Kibble, J. Phys. A 9 (1976) 1387
P. O. Mazur, Spinning Cosmic Strings and Quantization of Energy, Phys. Rev. Lett. 57 (1986) 929, https://doi.org/10.1103/PhysRevLett.57.929
O. Mustafa, Z. Algadhi, Position-dependent mass momentum operator and minimal coupling: point canonical transformation and isospectrality, Eur. Phys. J. Plus 134 (2019) 228, https://doi.org/10.1140/epjp/i2019-12588-y
O. Mustafa, S. H. Mazharimousavi, Ordering Ambiguity Revisited via Position Dependent Mass Pseudo-Momentum Operators, Int. J. Theor. Phys. 46 (2007) 1786, https://doi.org/10.1007/s10773-006-9311-0.43
O. Mustafa, PDM creation and annihilation operators of the harmonic oscillators and the emergence of an alternative PDMHamiltonian, Phys. Lett. A 384 (2020) 126265, https://doi.org/10.1016/j.physleta.2020.126265
O. von Roos, Position-dependent effective masses in semiconductor theory, Phys. Rev. B 27 (1983) 7547, https://doi.org/10.1103/PhysRevB.27.7547
O. Mustafa, PDM Klein-Gordon oscillators in cosmic string spacetime in magnetic and Aharonov-Bohm flux fields within the Kaluza-Klein theory, Ann. Phys. 440 (2022) 168857, https://doi.org/10.1016/j.aop.2022.168857
O. Mustafa, Confined Klein-Gordon oscillator from a (2+1)- dimensional Gürses to a Gürses or a pseudo-Gürses space-time backgrounds: Invariance and isospectrality, Eur. Phys. J. C 82 (2022) 82, https://doi.org/10.1140/epjc/s10052-022-10043-3
O. Mustafa, Confined Klein-Gordon oscillators in Minkowski spacetime and a pseudo-Minkowski spacetime with a spacelike dislocation: PDM KGoscillators, isospectrality and invariance, Ann. Phys. 446 (2022) 169124, https://doi.org/10.1016/j.aop.2022.169124
O. Mustafa, PDM Klein-Gordon particles in Gödel-type Som-Raychaudhuri cosmic string spacetime background, Eur. Phys. J. Plus 138 (2023) 21, https://doi.org/10.1140/epjp/s13360-022-03630-6
O. Mustafa, PDM KG-Coulomb particles in cosmic string rainbow gravity spacetime and a uniform magnetic field, Phys. Lett. B 839 (2023) 137793, https://doi.org/10.1016/j.physletb.2023.137793
B. G. da Costa and E. P. Borges, A position-dependent mass harmonic oscillator and deformed space, J. Math. Phys. 59 (2018) 042101, https://doi.org/10.1063/1.5020225
E. Barbagiovanni, S. Cosentino, D. Lockwood, R. N. Costa Filho, A. Terrasi, and S. Mirabella, Influence of interface potential on the effective mass in Ge nanostructures, Journal of Applied Physics, 1174 (2015) 15430, https://doi.org/10.1063/1.4918549
G. Barbagiovannia, D. Lockwoodb, R. N. Costa Filho, L. Goncharovad and P. Simpson, Quantum confinement in Si and Ge nanostructures: effect of crystallinity, Proc. SPIE 8915, Photonics North (2013) 891515, https://doi.org/10.1117/12.2036323
M. Barranco, M. Pi, S. M. Gatica, E. S. Hernandez, and J. Navarro, Structure and energetics of mixed 4He-3He drops, Phys. Rev. B 56 (1997) 8997, https://doi.org/10.1103/PhysRevB.56.8997
H. A. Bethe, Possible explanation of the solar-neutrino puzzle, Phys. Rev. Lett. 56 (1986) 1305, https://doi.org/10.1103/PhysRevLett.56.1305
M. G. Burt, The justification for applying the effectivemass approximation to microstructures, J. Phys.: Condens. Mat. 4 (1992) 6651, https://doi.org/10.1088/0953-8984/4/32/003
A. D. Alhaidari, Solutions of the nonrelativistic wave equation with position-dependent effective mass, Phys. Rev. A 66 (2002) 042116, https://doi.org/10.1103/PhysRevA.66.042116
S. H. Dong and M. Lozada-Cassou, Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential, Phys. Lett. A, 337 (2005) 313, https://doi.org/10.1016/j.physleta.2005.02.008
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables (Dover Publications, New York, 1970)
G. Arfken, H. Weber, and F. Harris, Mathematical Methods for Physicists: A Comprehensive Guide (Elsevier Science, 2012)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Boumali, A. Bouzenada, N. Messai, O. Mustafa
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.