Simulation of the 2E Technique on neutron multiplicity measurement as a function of fragment mass in spontaneous fission of 252Cf

Authors

DOI:

https://doi.org/10.31349/RevMexFis.70.031201

Keywords:

Spontaneous fission; californium 252; neutron emission; fragment distribution; neutron multiplicity

Abstract

A Monte Carlo simulation algorithm to investigate the measurement of the average prompt neutron multiplicity as a function of pre-neutron mass, ν(A), for fragments from the spontaneous fission of 252Cf is presented. The input data consist of experimental measurements of the kinetic energy and mass distributions obtained by Göök et al., and the values of ν(A) calculated using the FIFRELIN model by Piau et al., νth(A). We analyze the output curve, νsim(A), obtained by simulation of the 2E technique, which should ideally match νth(A). However, we find that νsim(A) exhibits a maximum value at A≈122, close to mass symmetry, while νth(A) has a maximum at A≈118. Additionally, we observe that νsim(A) > νth(A) for A< 90 and A> 169, respectively. We attribute this discrepancy to inaccuracies in the relationship between provisional mass and the pre-neutron mass used in the 2E technique for data processing in each fission event.

References

O. Hahn and F. Strassmann, Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung; Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung, Die Naturwissenschaften 27 (1939) 89, https://doi.org/10.1007/BF01488988

L. Meitner and O. R. Frisch, Products of the Fission of the Uranium Nucleus, Nature 143 (1939) 471, https://doi.org/10.1038/143471a0

N. Bohr et al., The Mechanism of Nuclear Fission, Physical Review 56 (1939) 426, https://doi.org/10.1103/PhysRev.56.426

K. H. Schmidt et al.,, General Description of Fission Observables: GEF Model Code, Nuclear Data Sheets 131 (2016) 107, https://doi.org/10.1016/J.NDS.2015.12.009

A. E. Lovell et al., Extension of the Hauser-Feshbach fission fragment decay model to multichance fission, Physical Review C 103 (2021) 014615, https://doi.org/10.1103/PHYSREVC.103.014615

K. Shimada et al., Dependence of total kinetic energy of fission fragments on the excitation energy of fissioning systems, Physical Review C 104 (2021) 054609, https://doi.org/10.1103/PHYSREVC.104.054609

E. E. Maslin, A. L. Rodgers, and W. G. Core, Prompt Neutron Emission from U235 Fission Fragments, Physical Review 164 (1967) 1520, https://doi.org/10.1103/PhysRev.164.1520

D. Belhafaf et al., Kinetic energy distributions around symmetric thermal fission of U234 and U236, Zeitschrift fGür Physik A Atoms and Nuclei 309 (1983) 253, https://doi.org/10.1007/BF01413757

A. Tudora et al., Sensitivity of Prompt Neutron Multiplicity to Fission Fragment Characteristics, Nuclear Science and Engineering 181 (2015) 289, https://doi.org/10.13182/NSE14-108

A. Göök, F. J. Hambsch, and M. Vidali, Prompt neutron multiplicity in correlation with fragments from spontaneous fission of Cf 252, Physical Review C - Nuclear Physics 90 (2014) 064611, https://doi.org/10.1103/PHYSREVC.90.064611

A. Al-Adili et al., Prompt fission neutron yields in thermal fission of U 235 and spontaneous fission of Cf 252, Physical Review C 102 (2020) 064610, https://doi.org/10.1103/PHYSREVC.102.064610

V. Piau et al., Neutron and gamma multiplicities calculated in the consistent framework of the Hauser-Feshbach Monte Carlo code FIFRELIN, Physics Letters B 837 (2023) 137648, https://doi.org/10.1016/J.PHYSLETB.2022.137648

Downloads

Published

2024-05-01

How to Cite

[1]
M. Montoya, A. Obregón, and M. Alvarez, “Simulation of the 2E Technique on neutron multiplicity measurement as a function of fragment mass in spontaneous fission of 252Cf”, Rev. Mex. Fís., vol. 70, no. 3 May-Jun, pp. 031201 1–, May 2024.