The spectra masses for heavy pentaquark using generalized fractional of the extended Nikiforov-Uvaro method

Authors

  • M. Abu-Shady Faculty of Science, Menoufia University
  • N. H. Gerish Faculty of Science, Suez Canal University

DOI:

https://doi.org/10.31349/RevMexFis.70.030801

Keywords:

Nikiforov-Uvarov method; heavy diquark systems

Abstract

The Nikiforov-Uvarov method is an efficient technique for solving of heavy diquark systems. It has been used to derive analytic-exact energy eigenvalues and eigenfunctions in fractional forms, which are useful in describing such systems. The potentials employed include the Cornell potential, harmonic potential, and spin-spin interaction; have been updated with respect to previous studies. Mass spectra of heavy pentaquarks were also calculated using this method. Compared to previous studies, the present results exhibit good experimental data agreement and are improved. We deduce that the fractional models contribute greatly to the heavy pentaquark masses.

References

L. Okun, The Theory of Weak Interaction. in 11th International Conference on High-energy Physics, (1962) 845-866

M. Gell-Mann, A Schematic Model of Baryons and Mesons. Phys. Lett. 8 (1964) 214. https://doi.org/10.1016/S0031.9163(64)92001-3

G. Zweig, An SU(3) Model for Strong Interaction Symmetry and Its Breaking. CERN Report No. CERN-TH-401, Version 1 (1964). https://doi.org/10.17181/CERN-TH.412

G. Zweig, Developments in the quark theory of hadrons. Report No. CERN-TH-412, NP- 14146, PRINT-64-170, Version 2, pp. 22-101 (1980)

M. Abu-Shady, E. M. Khokha, Bound State Solution of the Dirac Equation for the Generalized Cornell Potential. Int. J. Mod. Phys. A 36 (2021) 2150195, https://doi.org/10.1145/s0217751x21501955

M. Rashan, M. Abu-Shady, and T. S. T. Ali, Nucleon Properties from Modified Sigma Model. Int. J. Mod. Phys. A, 22 (2007) 2673. https://doi.org/10.1142/S0217751X0703178

M. Abu-Shady, M. Rashan, Effect of a logarithmic mesonic potential on nucleon properties in the coherent-pair approximation. Int. J. Phys. Rev. C- Nuclear Phys., 81 (2010) 015203, https://doi.org/10.1103/PhysRevC.81.015203

M. Rashan, M. Abu-Shady, and T. S. T. Ali, Extended Linear Sgma Model in Higher Order Mesonic Interaction. Int. J. Mod. Phys. E 15 (2006) 143, https://doi.org/10.1142/S0218306003965

R. Jaffe, Exotica. Phys. Rep. 409 (2005) 1, https://doi.org/10.1016/j.PhysRep.2004.11.005

M. Tanabashi et al., (Particle Data Group), Review of Particle Physics. Int. J. Phys. Rev. D 98 (2018) 030001, https://doi.org/10.1103/PhysRevD.98.030001

P. Colangelo, F. De Fazio, F. Giannuzzi, and S. Nicotri, New Meson Spectroscopy With Open Charm and Beauty. Int. J. Phys. Rev. D 86 (2012) 054024, https://doi.org/10.1103/PhysRevD.86.054024

A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy Pentquarks and Tetraquarks. Prog. Part. Nucl. Phys. 97 (2017) 123, https://doi.org/10.1016/j.ppnp.2017.08.003

M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states. Annu. Rev. Nucl. Part. Sci. 68 (2018) 17, https://doi.org/10.1146/annurev-nucl-10197.020902

H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The Hidden- Charm Pentquark and Tetraquark states. Phys. Rep. 639 (2016) 1, https://doi.org/10.48550/arxiv.1601.02092

R. Aaij et al. (LHCb Collaboration), Observation of J/Ψp Resonances Consistent with Pentaquark State in Λb → J/Ψk −p Decays. Int. J. Phys. Rev. Lett., 115 (2015) 072001, https://doi.org/10.1103/PhysRevLett.115.072001

R. Aaij et al., (LHCb Collaboration), Observation of a Narrow Pentaquark State Pc(4312)+ and of The Two Peak Structure of The Pc(4450)+. Int. J. Phys. Rev. Lett. 122 (2019) 222001, https://doi.org/10.1103/PhysRevLett.122.222001

R. D. Matheus, F.S. Navarra, M. Nielsen, and R. Rodrigues da Silva, Pentaquark Masses in QCD Sum Rules. Nucl. Phys. B (Proc. Suppl.) 152 (2006) 228, https://doi.org/10.1016/j.NuclPhysbps.2005.08.03

T. Inoue, V. E. Lyubovitskij, Th. Gutsche and A. Faessler, Masses Spectrum of the J p = 1/2 − and J p = 3/2 − Pentaquark Antidecuplets in the Perturbative Chiral Quark Model Int. J. Mod. Phys. E 14 (2005) 995, https://doi.org/10.1142/S0218301305003752

E. Santopinto, A. Giachino, Hidden-Charm and Bottom Pentaquark States. Int. J. Phys. Rev. D 96 (2017) 014014, https://doi.org/10.22323/l.326.0065

R. Bijker, M. M. Giannini, E. Santopinto, Spectroscopy of pentaquark states. Eur. Phys. J. A 22 (2004) 319, https://doi.org/10.48550/arXiv.hep-ph/0310281

M. Karliner, H. J. Lipkin, Tetraquark and Pentaquark Systems in Lattice QCD. Int. J. Phys. Lett. B 575 (2003) 249, https://doi.org/10.1016/j.physletb.2003.09.062

R. Zhu and C. F. Qiao, Pentaquark states in a diquark-triquark model. Int. J. Phys. Lett. B 756 (2016) 259, https://doi.org/10.1016/j.physletb.2016.03.022

L. Maiani, A. D. Polosa, V. Riquer, The new pentaquarks in the diquark model. Phys. Lett. B 749 (2015) 289, https://doi.org/10.1016/j.physletb.2015.08.008

F. Giannuzzi, Heavy pentaquark spectroscopy in the diquark model. Int. J. Phys. Rev. D 99 (2019) 094006, https://doi.org/10.1103/PhysRevD.99.094006

S. M. M. Nejad and A. Armat, Determination of the Mass and the Energy Spectra of Heavy Pentaquarks in the Diquark Model. Few-Body Syst. 31-61 (2020), https://doi.org/10.1007/s00601-020-01564-2

R. Herrmann, Properties of a Fractional Derivative Schrodinger Type Wave Equation and a New Interpretation of the Charmonium Spectrum. arXiv: 0510099v4 (2006)

M. Abu-Shady, E. M. Khokha, T. A. Abdel-Karim, The Generalized Fractional NU Method for the Diatomic Molecules in the Deng-Fan Model. Eur. Phys. J. D 76 (2022) 159, https://doi.org/10.1140/epjd/S10053-022-00480-w

M. Abu-shady, H. M. Fath-Allah, The Parametric Generalized Fractional Nikiforov-Uvarov Method and Its Applications. Advances in High Energy Physics, 2022 (2022). https://doi.org/10.26565/2312-4334-2023-3-22

H. Karayer, D. Demirhan, and F. Buyukk, Some Special Solutions of Biconfluent and Triconfluent Heun Equations in Elementary Functions by Extended Nikiforov-Uvarov Method. Commun. Theor. Phys. 12 (2016) 66, https://doi.org/10.1016/S0034-4877(15)00039-7

T. Das, U. Ghosh, and S. Sarkar, Higher Dimensional Fractional Time Independent Schrodinger Equation via Jumarie Fractional Derivative with Generalized pseudoharmonic potential. arXiv: 1802.04370v1 (2018). https://doi.org/:10.1007/s12043-019-1836-x

J. Banerjee, U. Ghosh, S. Sarkar, and S. Das. Pramana, An Iteration Algorithm for the Time-Independent Fractional Schrödinger Equation with Coulomb Potential. J. Phys. 88 (2017) 70, https://doi.org/10.1007/S12043-020-02019-3

M. Eslami, H. Rezazadeh, M. Rezazadeh, and S. S. Mosavi, Exact Solutions to the Space-Time Fractional Schrödinger-Hirota Equation and the Space-Time Modified KDV-Zakharov-Kuznetsov Equation. Opt. Quant. Electron 49 (2017) 279, https://doi1.org/10.1007/S11082-017-1112-6

M. Abu-Shady, T. A. Abdel-Karim, and E. M. Khokha, Binding Energies and Dissociation Temperatures of Heavy Quarkonia at Finite Temperature and Chemical Potential in the N-Dimensional Space. Adv. High Energy Phys. 2018 (2018) 7356843, https://doi.org/10.1155/2018/7356843

F. S. Khodadad, F. Nazari , M. Eslami, and H. Rezazadeh, Soliton Solutions of the Conformable Fractional Zakharov?Kuznetsov Equation with Dual-Power Law Nonlinearity. Opt. Quant. Electron, 49 (2017) 384, https://dx.doi.org/10.1007/s11082-017-1225-y

M. Abu-shady, The Fractional Schrödinger Equation with the Generalized Woods-Saxon Potential. Int. J. Mod. Phys. A 34 (2019) 1950201, https://doi.org/10.26565/2312-4334-2023-1-06

M. Abu-Shady and M. K. A. Kaabar, A Generalized Definition of the Fractional Derivative with Applications. Mathematical Problems in Engineering, 2021 (2021) 9444803, https://doi.org/10.1155/2021/9444803

H. Karayer, D. Demirhan and F. Buyukkilic, Extension of Nikiforov-Uvarov Method for the Solution of Heun Equation. J. Math. Phys. 56 (2015) 063504, https://doi.org/10.1063/1.4922601

A. Al-Jamel, The search for fractional order in heavy quarkonia spectra. Int. J. Mod. Phys. 34 (2019) 10, https://doi.org/10.1142/S0217751X19500544

M. Abu-Shady and A. N. Ikot, Analytic Solution of Multi-Dimensional Schrödinger Equation in Hot and Dense QCD Media Using the SUSYQM Method. Euro. Phys. J. Plus, 134 (2019) 7, https://doi.org/10.1140/epjp/i2019-12685-y

M. Abu-Shady, M. M. A. Ahmed and N. H. Gerish,The non-relativistic Treatment of Heavy Tetraquark Masses in the Logarithmic Quark Potential. Rev. Mex. Fis., 68 (2022) 060801, https://doi.org/10.31349/RevMexFis.68.060801

M. Abu-Shady, M. M. A. Ahmed and N. H. Gerish, Generalized Fractional of the Extended Nikiforov-Uvarov Method for Heavy Tetraquark Masses Spectra. Int. J. Mod. Phys. Let. A 2350028 (2023), https://doi.org/10.1142/S0217732323500281

M. Abu-Shady and Sh. Y. Ezz-Alarab, Trigonometric RosenMorse Potential as a Quark-Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM. Few-Body, Syst. 60 (2019) 66, https://doi.org/10.1007/s00601-019-1531-y

M. Abu-Shady and Sh. Y. Ezz-Alarab, Conformable Fractional of the Analytical Exact Iteration Method for Heavy Quarkonium Masses Spectra. Few-Body, Syst 62 (2021), https://doi.org/10.1007/S00601-021-01591-7

M. Tanabashi et al. (Particle Data Group). Review of Particle Physics. Int. J. Phys. Rev. D 98 (2018) 030001, https://doi.org/10.1103/PhysRevD.98.030001

E. Ortiz-pacheco, R. Bijker, and C. Fernandez-Ramirez, Hidden Charm Pentaquarks: Mass spectrum, Magnetic Moments and Photocouplings. J. Phys. G:Nucl. Part. Phys 46 (2019) 065104, https://doi.org/10.1088/1361-6471/ab096d

Hong-Tao An, Kan Chen, Zhan-Wei Liu and Xiang Liu, Heavy flavor pentaquarks with four heavy quarks. Int. J. Phys. Rev. D 103 (2021) 114027, https://doi.org/10.1103/PhysRevD.103.114027

Ye Yan, Yuheng Wu, Xiaohuang Hu, Hongxia Huang, and Jialun Ping, Fully Heavy Pentaquarks in Quark Models. Phys. Rev. D. 105 (2022) 014027, https://doi.org/10. 1103/PhysRevD.105.014027

Shi-Yuan Li, Yan-Rui Liu, Yu-Nan Liu, Zong-Guo Si, and Jing Wu, Pentaquark States with the QQQqq¯ Configuration in a Simple Model. Eur. Phys. J. C 79 (2019) 87, https://doi.org/10.1140/epjc/s10052-019-6589-7

M. Adu-Shady, Chiral Logarithmic Quark Model of N and ∆ with an A-term in the Mean-Field Approximation. Int. J. Mod. Phys. A 26 (2011) 235, https://doi.org/10.1142/ S0217751X11051469

M. Adu-Shady, H. M. mansour, and A. I. Ahmadov, Dissociation of Quarkonium in Hot and Dense Media in an Anisotropic Plasma in the Non-relativistic Quark Model. Advances High Energy Physics, 2019 (2019) 4785616. https://doi.org/10.1155/2019/4785615

M. Adu-Shady, Meson properties at finite temperature in the linear sigma model. Int. J. Theor. Phys. 49 (2010) 2425, https://doi.org/10.1007/S10773-010-0428-9

M. Adu-Shady,The effect of finite temperature on the nucleon properties in the extended linear sigma model. Int. J. Mod. Phys. E 21 (2012) 1250061, https://doi.org/10.1142/S0218301312500619

Downloads

Published

2024-05-01

How to Cite

[1]
M. Abu-Shady and N. H. . Gerish, “The spectra masses for heavy pentaquark using generalized fractional of the extended Nikiforov-Uvaro method”, Rev. Mex. Fís., vol. 70, no. 3 May-Jun, pp. 030801 1–, May 2024.