Linear entropy in the atom-field interaction at finite temperature
DOI:
https://doi.org/10.31349/RevMexFis.70.031302Keywords:
Atom-field interaction, entropyAbstract
We study the atom-field interaction at finite temperature and in the dispersive regime. We show that the master equation for this sytem may be solved with the use of superoperator techniques. We calculate the linear entropy in case the field is initially in a coherent state and the atom in a superposition of its ground and excited states.
References
C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, 2005)
S. Abdel-Kahlek, K. Berrada, and H. Eleuch, Effect of the timedependent coupling on a superconducting qubit-field system under decoherence: Entanglement and Wehrl entropy, Ann. of Phys 361 (2015) 247, https://doi.org/10.1016/j.aop.2015.06.015
J. V. Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955)
H. Araki and E. H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160, https://doi.org/10.1007/BF01646092
S. J. D. Phoenix and P. L. Knight, Fluctuations and Entropy in Models of Quantum Optical Resonance, Annals of Physics 186 (1988) 381, https://doi.org/10.1016/0003-4916(88)90006-1
A. Zúñiga-Segundo et al., Field’s entropy in the atom-field interaction: Statistical mixture of coherent states, Ann. of Phys. 379 (2017) 150, https://doi.org/10.1016/j.aop.2017.02.007
B. M. Rodríguez-Lara and H. M. Moya-Cessa, Por qué y cómo encontramos funciones de matrices: entropía en mecánica cuántica, Rev. Mex. Fıs. E 51 (2005) 87
A. Motazedifard, S. A. Madani, and N. S. Vayaghan, Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits, Opt. Quant. Electr. 53 (2021) 378, https://doi.org/10.1007/s11082-021-03384-y
E. T. Jaynes and F. W. Cummings, Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser, Proc. IEEE. 51 (1963) 89, https://doi.org/10.1109/PROC.1963.1664
M. Satyanarayana, et al., Ringing revivals in the interaction of a two-level atom with squeezed light, J. Opt. Soc. Am. B 6 (1989) 228, https://doi.org/10.1364/JOSAB.6.000228
H. Moya-Cessa and A. Vidiella-Barranco, Interaction of squeezed states of light with two-level atoms, J. of Mod. Optics 39 (1992) 2481, https://doi.org/10.1080/09500349214552511
A. Vidiella-Barranco, H. Moya-Cessa, and V. Buzek, Interaction of superpositions of coherent states of light with two-level atoms, J. of Mod. Optics 39 (1992) 1441, https://doi.org/10.1080/09500349214551481
R. J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131 (1963) 2766, https://doi.org/10.1103/PhysRev.131.2766
S. M. Barnett, et al., Journeys from quantum optics to quantum technology, Progress in Quantum Electronics 54 (2017) 19, https://doi.org/10.1016/j.pquantelec.2017.07.002
J. Gea-Banacloche, Atom- and field-state evolution in the Jaynes-Cummings model for large initial fields, Phys. Rev. A 44 (1991) 5913, https://doi.org/10.1103/PhysRevA.44.5913
R. Juárez-Amaro, et al., Relation between the entropy and the linear entropy in the ion-laser interaction, Journal of Modern Optics 67 (2020) 805, https://doi.org/10.1080/09500340.2020.1772393
S. J. D. Phoenix, Wave-packet evolution in the damped oscillator, Phys. Rev. A 41 (1990) 5132, https://doi.org/10.1103/PhysRevA.41.5132
L. M. Arévalo-Aguilar and H. M. Moya-Cessa, Quantum bits and superposition of displaced Fock states of the cavity field, Rev. Mex. Fıs. 48 (2002) 423
H. Wu, X. Fan, and L. Chen, How gravitational fluctuations degrade the high dimensional spatial entanglement, Phys. Rev. D 106 (2022) 045023, https://doi.org/10.1103/PhysRevD.106.045023
H.Wu, X. Fan, and L. Chen, Twisting and entangling gravitons in high-dimensional orbital agular momentum states ia photongraviton conversion, Phys. Rev. D 107 (2023) 125027, https://doi.org/10.1103/PhysRevD.107.125027
A. Perez-Leija et al., Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks, npj Quantum Information 4 (2018) 45, https://doi.org/10.1038/s41534-018-0094-y
N. Yazdanpanah, et al., Reconstruction of quasiprobability distribution functions of the cavity field considering field and atomic decays, Optics Communications 400 (2017) 69, https://doi.org/10.1016/j.optcom.2017.05.001
A. B. Klimov and L. L. Sanchez-Soto, Method of small rotations and effective Hamiltonians in nonlinear quantum optics, Physical Review A 61 (2000) 063802, https://doi.org/10.1103/PhysRevA.61.063802
S. M. Chumakov, A. B. Klimov, and C. Saavedra, Dispersive atomic evolution in a dissipative-driven cavity, Physical Review A 61 (2000) 033814, https://doi.org/10.1103/PhysRevA.61.033814
A. B. Klimov, L. L. Sanchez-Soto, and J. Delgado, Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation, Optics Communications 191 (2001) 419, https://doi.org/10.1016/S0030-4018(01)01139-7
L. M. Arévalo-Aguilar and H. Moya-Cessa, Cavidad con pérdidas: una descripción usando superoperadores, Rev. Mex. de Fis. 42 (1996) 675
R. Juárez-Amaro and H. M. Moya-Cessa, Direct measurement of quasiprobability distributions in cavity QED, Phys. Rev. A 68 (2003) 023802, https://doi.org/10.1103/PhysRevA.68.023802
L. Medina-Dozal, et al., Temporal evolution of a driven optomechanical system in the strong coupling regime, Physica Scripta 99 (2024) 015114, https://doi.org/10.1088/1402-4896/ad15cf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Héctor Manuel Moya Cessa, Raul Juarez-Amaro
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.