The latent heat of confined fluids calculated from the Clausius-Clapeyron equation
DOI:
https://doi.org/10.31349/RevMexFis.70.031701Keywords:
Confined fluids, Monte Carlo, Phase transition, latent heat, coexistence lines, fluid structureAbstract
Monte Carlo simulations of simple Lennard Jones fluids confined in different geometries, sphere, cylinder and slit-like pores are conducted to study the vapour-liquid transition. Phase diagrams, in the temperature-density (T-ρ) and pressure-temperature (P-T) are obtained. For each geometry the coexistence lines are plotted from the clapeyron equation of each systems and a P −T equation is proposed in terms of the critical temperature which works for all the systems. Additionally, the transition latent heat is also evaluated, from the enthalpy calculation obtained directly from the simulation data, and the fluid structure from density profiles.
References
C. Alba-Simionesco et al., J. Phys.: Condens. Matter 18 (2006) R15, https://doi.org/10.1088/0953-8984/18/6/R01
R. Evans, J. Condens. Matter Phys. 2 (1990) 8989, https://doi.org/10.1088/0953-8984/2/46/001
Q. Feng, S. Xu, X. Xing, W. Zhang, and S. Wang, Adv. Geo-Energy Res., 4 (2020) 406, https://doi.org/10.46690/ager.2020.04.06
P. Huber, J. Condens. Matter Phys. 27 (2015) 103102, https://doi.org/10.1088/0953-8984/27/10/103102
Z. Jin and A. Firoozabadi, Spe J. 21 (2016) 190, https://doi.org/10.2118/176015-PA
E. Lowry and M. Piri, Langmuir, 34 (2018) 9349, https://doi.org/10.1021/acs.langmuir.8b00986
M. Thommes and C. Schlumberger, Annu. Rev. Chem. Biomol. Eng. 12 (2021) 137, https://doi.org/10.1146/annurev-chembioeng-061720-081242
W. A. Steele, Surf. Sci. 36 (1973) 317, https://doi.org/10.1016/0039-6028(73)90264-1
W. A. Steele, The interfacial of Gases with solid Surfaces. Pergamon Press, (Oxford, 1974)
D. W. Siderius and L. D. Gelb, J. Chem. Phys. 135 (2011) 084703, https://doi.org/10.1063/1.3626804
L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. S. Bartkowiak, Rep. Prog. Phys. 63 (2000) 727, https://doi.org/10.1088/0034-4885/62/12/201
S. P. Tan, E. Barsotti and M. Piri, Ind. Eng. Chem. Res., 59 (2020) 10673, https://doi.org/10.1021/acs.iecr.0c01848
P. I. Ravikovitch, A. Vishnyakov, and A. V. Neimark, Phys. Rev. E, 64 (2001) 011602, https://doi.org/10.1103/PhysRevE.64.011602
K. E. Gubbins, Y. Long, and M. S. Bartkowiak, J. Chem. Thermodyn. 74 (2014) 169, https://doi.org/10.1016/j.jct.2014.01.024
1E. Barsotti, S. P. Tan, S. Saraji, M. Piri, and J.-H. Chen, Fuel 184 (2016) 344, https://doi.org/10.1016/j.fuel.2016.06.123
M. P. Singh, R. K. Singh, and S. Chandra, Prog. Mater. Sci. 64 (2014) 73, https://doi.org/10.1016/j.pmatsci.2014.03.001
S. Perkin, Phys. Chem. Chem. Phys. 14 (2012) 5052, https://doi.org/10.1039/C2CP23814D
S. P. Tan, E. Barsotti, and M. Piri, Ind. Eng. Chem. Res. 59 (2020) 10673, https://doi.org/10.1021/acs.iecr.0c01848
K. Morishige and M. Shikimi, J. Chem. Phys. 108 (1998) 7821, https://doi.org/10.1063/1.476218
S. P. Tan and M. Piri, Phys. Chem. Chem. Phys. 19 (2017) 5540, https://doi.org/10.1039/C6CP07814A
C. Faivre, D. Bellet, and G. Dolino, Eur. Phys. J. B, 7 (1999) 19, https://doi.org/10.1007/s100510050586
S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, and T. Yamaguchi, Phys. Chem. Chem. Phys., 8 (2006) 3223, https://doi.org/10.1039/B518365K
X. Qiu, S. P. Tan, M. Dejam, and H. Adidharma, Langmuir, 35 (2019) 11635, https://doi.org/10.1021/acs.langmuir.9b01399
S. P. Tan, X. Qiu, M. Dejam, and H. Adidharma, J. Phys. Chem. C, 123 (2019) 9824, https://doi.org/10.1021/acs.jpcc.9b00299
Ravikovitch, P. I.; Vishnyakov, A. y Neimark, A. V. Phys. Rev. E 64 (2001) 011602, https://doi.org/10.1103/PhysRevE.64.011602
R. Evans, J. Phys.: Condens. Matter. 2 (1990) 8989, https://doi.org/10.1088/0953-8984/2/46/001
R. Evans, P. Tarazona, J. Chem. Soc. Faraday Trans. 82 (1986) 1763. https://doi.org/10.1039/F29868201763
J. K. Johnson, J. A. Zollweg, K. E. Gubbins, Molec. Phys. 78 (1993) 591, https://doi.org/10.1080/00268979300100411
J.S. Rowlinson, and F. L. Swinton, Liquids and Liquid Mixtures 3rd edn, (London Butterworth, 1982)
D. C. Johnston, Advances in Thermodynamics of the van der Waals Fluid, Chapter 7. Morgan and ClaypoolPublishers, (IOP Publishing, 2014)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Erendira Aguilar-Huerta, Ana Beatriz Salazar-Arriaga, Héctor Dominguez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.