The latent heat of confined fluids calculated from the Clausius-Clapeyron equation

Authors

  • Erendira Aguilar-Huerta Universidad Nacional Autonoma de Mexico
  • Ana Beatriz Salazar-Arriaga Universidad Nacional Autonoma de Mexico
  • Héctor Dominguez Instituto de Investigaciones en Materiales, UNAM

DOI:

https://doi.org/10.31349/RevMexFis.70.031701

Keywords:

Confined fluids, Monte Carlo, Phase transition, latent heat, coexistence lines, fluid structure

Abstract

Monte Carlo simulations of simple Lennard Jones fluids confined in different geometries, sphere, cylinder and slit-like pores are conducted to study the vapour-liquid transition. Phase diagrams, in the temperature-density (T-ρ) and pressure-temperature (P-T) are obtained. For each geometry the coexistence lines are plotted from the clapeyron equation of each systems and a P −T equation is proposed in terms of the critical temperature which works for all the systems. Additionally, the transition latent heat is also evaluated, from the enthalpy calculation obtained directly from the simulation data, and the fluid structure from density profiles.

References

C. Alba-Simionesco et al., J. Phys.: Condens. Matter 18 (2006) R15, https://doi.org/10.1088/0953-8984/18/6/R01

R. Evans, J. Condens. Matter Phys. 2 (1990) 8989, https://doi.org/10.1088/0953-8984/2/46/001

Q. Feng, S. Xu, X. Xing, W. Zhang, and S. Wang, Adv. Geo-Energy Res., 4 (2020) 406, https://doi.org/10.46690/ager.2020.04.06

P. Huber, J. Condens. Matter Phys. 27 (2015) 103102, https://doi.org/10.1088/0953-8984/27/10/103102

Z. Jin and A. Firoozabadi, Spe J. 21 (2016) 190, https://doi.org/10.2118/176015-PA

E. Lowry and M. Piri, Langmuir, 34 (2018) 9349, https://doi.org/10.1021/acs.langmuir.8b00986

M. Thommes and C. Schlumberger, Annu. Rev. Chem. Biomol. Eng. 12 (2021) 137, https://doi.org/10.1146/annurev-chembioeng-061720-081242

W. A. Steele, Surf. Sci. 36 (1973) 317, https://doi.org/10.1016/0039-6028(73)90264-1

W. A. Steele, The interfacial of Gases with solid Surfaces. Pergamon Press, (Oxford, 1974)

D. W. Siderius and L. D. Gelb, J. Chem. Phys. 135 (2011) 084703, https://doi.org/10.1063/1.3626804

L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. S. Bartkowiak, Rep. Prog. Phys. 63 (2000) 727, https://doi.org/10.1088/0034-4885/62/12/201

S. P. Tan, E. Barsotti and M. Piri, Ind. Eng. Chem. Res., 59 (2020) 10673, https://doi.org/10.1021/acs.iecr.0c01848

P. I. Ravikovitch, A. Vishnyakov, and A. V. Neimark, Phys. Rev. E, 64 (2001) 011602, https://doi.org/10.1103/PhysRevE.64.011602

K. E. Gubbins, Y. Long, and M. S. Bartkowiak, J. Chem. Thermodyn. 74 (2014) 169, https://doi.org/10.1016/j.jct.2014.01.024

1E. Barsotti, S. P. Tan, S. Saraji, M. Piri, and J.-H. Chen, Fuel 184 (2016) 344, https://doi.org/10.1016/j.fuel.2016.06.123

M. P. Singh, R. K. Singh, and S. Chandra, Prog. Mater. Sci. 64 (2014) 73, https://doi.org/10.1016/j.pmatsci.2014.03.001

S. Perkin, Phys. Chem. Chem. Phys. 14 (2012) 5052, https://doi.org/10.1039/C2CP23814D

S. P. Tan, E. Barsotti, and M. Piri, Ind. Eng. Chem. Res. 59 (2020) 10673, https://doi.org/10.1021/acs.iecr.0c01848

K. Morishige and M. Shikimi, J. Chem. Phys. 108 (1998) 7821, https://doi.org/10.1063/1.476218

S. P. Tan and M. Piri, Phys. Chem. Chem. Phys. 19 (2017) 5540, https://doi.org/10.1039/C6CP07814A

C. Faivre, D. Bellet, and G. Dolino, Eur. Phys. J. B, 7 (1999) 19, https://doi.org/10.1007/s100510050586

S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, and T. Yamaguchi, Phys. Chem. Chem. Phys., 8 (2006) 3223, https://doi.org/10.1039/B518365K

X. Qiu, S. P. Tan, M. Dejam, and H. Adidharma, Langmuir, 35 (2019) 11635, https://doi.org/10.1021/acs.langmuir.9b01399

S. P. Tan, X. Qiu, M. Dejam, and H. Adidharma, J. Phys. Chem. C, 123 (2019) 9824, https://doi.org/10.1021/acs.jpcc.9b00299

Ravikovitch, P. I.; Vishnyakov, A. y Neimark, A. V. Phys. Rev. E 64 (2001) 011602, https://doi.org/10.1103/PhysRevE.64.011602

R. Evans, J. Phys.: Condens. Matter. 2 (1990) 8989, https://doi.org/10.1088/0953-8984/2/46/001

R. Evans, P. Tarazona, J. Chem. Soc. Faraday Trans. 82 (1986) 1763. https://doi.org/10.1039/F29868201763

J. K. Johnson, J. A. Zollweg, K. E. Gubbins, Molec. Phys. 78 (1993) 591, https://doi.org/10.1080/00268979300100411

J.S. Rowlinson, and F. L. Swinton, Liquids and Liquid Mixtures 3rd edn, (London Butterworth, 1982)

D. C. Johnston, Advances in Thermodynamics of the van der Waals Fluid, Chapter 7. Morgan and ClaypoolPublishers, (IOP Publishing, 2014)

Downloads

Published

2024-05-01

How to Cite

[1]
E. Aguilar-Huerta, A. B. Salazar-Arriaga, and H. Dominguez, “The latent heat of confined fluids calculated from the Clausius-Clapeyron equation”, Rev. Mex. Fís., vol. 70, no. 3 May-Jun, pp. 031701 1–, May 2024.

Issue

Section

17 Thermodynamics and Statistical Physics