Structural, electronic and optical properties of the Half-Heusler MgYGa alloy Via DFT calculations
DOI:
https://doi.org/10.31349/RevMexFis.70.030502Keywords:
MgYGa alloy, structural properties, optical properties, Density Functional.Abstract
Ab initio calculation of the structural, electronic and optical properties of half-Heusler MgYGa alloy are reported using the FP-LAPW approach of the Density Functional Theory. Generalized Gradient Approximation was used as the exchange and correlation potential for investigating these properties. Structural properties of MgYGa alloy, such as the lattice constants, bulk modulus and pressure derivative of the bulk module have been studied. Electronic properties were investigated by calculating and analyzing the electronic band structure, partial and total density of states graphs for the MgYGa compound. We have found that MgYGa compound has a metallic character. The investigation of optical properties indicates a great interaction between the compound and the incident light.
References
H. Hohl et al., Efficient dopants for ZrNiSn-based thermoelectric materials, J. Phys. Condens. Matter 11 (1999) 1697, https://doi.org/10.1088/0953-8984/11/7/004g
G. Nolas, J. Poon, and M. Kanatzidis, Recent Developments in Bulk Thermoelectric Materials, MRS Bull. 31 (2006) 199, https://doi.org/10.1557/mrs2006.45g
C. Yu et al., High-performance half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering, Acta Mater. 57 (2009) 2757, https://doi.org/10.1016/j.actamat.2009.02.026g
I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, Electronic structure and SlaterPauling behaviour in half-metallic Heusler alloys calculated from first principles, J. Phys. D: Appl. Phys. 39 (2006) 765, https://doi.org/10.1088/0022-3727/39/5/S01g
V. Dinh, K. Sato, and H. Yoshida, First Principle Study of Spinodal Decomposition Thermodynamics in HalfHeusler Alloy CoTi1−x Fex Sb, J. Su- percond. Nov. Magn. 23 (2010) 75, https://doi.org/10.1007/s10948-009-0573-7g
L. Huang et al., Recent progress in half-Heusler thermoelectric materials, Materials Research Bulletin 76 (2016) 107, https://doi.org/10.1016/j.materresbull.2015.11.032g
D. Kieven et al., I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81 (2010) 075208, https://doi.org/10.1103/PhysRevB.81.075208g
S. Yuasa et al., Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(001) electrodes, Appl. Phys. Lett. 89 (2006) 042505, https://doi.org/10.1063/1.2236268g
S. S. P. Parkin et al., Giant magnetoresistance in magnetic nanostructures, Annu. Rev. Mater. Sci. 25 (1995) 357, https://doi.org/10.1146/annurev.ms.25.080195.002041g
I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76 (2004) 323, https://doi.org/10.1103/RevModPhys.76.323g
B. Hülsen, M. Scheffler, and P. Kratzer, Thermodynamics of the Heusler alloy Co2-x Mn1+xSi: A combined density functional theory and cluster expansion study, Phys. Rev. B 79 (2009) 094407, https://doi.org/10.1103/PhysRevB.79.094407g
T. Graf, C. Felser, and S. Parkin, Simple rules for the understanding of Heusler compounds, Progress in Solid State Chemistry 39 (2011) 1, https://doi.org/10.1016/j.progsolidstchem.2011.02.001g
F. Benzoudji et al., Insight into the structural, elastic, electronic, thermoelectric, thermodynamic and optical properties of MRhSb (M=Ti, Zr, Hf) half- Heuslers from ab initio calculations, Chin. J. Phys. 59 (2019) 434, https://doi.org/10.1016/j.cjph.2019.04.009
S. Wolf et al., Spintronics: a spin-based electronics vision for the future, Science 294 (2001) 1488, https://doi.org/10.1126/science.1065389g
T. Dietl et al., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (2000) 1019, https://doi.org/10.1126/science.287.5455.1019g
J. Balluff et al., Integration of antiferromagnetic Heusler compound Ru2MnGe into spintronic devices, Appl. Phys. Lett. 111 (2017) 032406, https://doi.org/10.1063/1.4985179g
S. Gupta and K. Suresh, Review on magnetic and related properties of RTX compounds, Journal of Alloys and Compounds 618 (2015) 562, https://doi.org/10.1016/j.jallcom.2014.08.079g
T. Graf et al., Phase separation in the quaternary Heusler compound CoTi1−xMnxSb-A reduction in the thermal conductivity for thermoelectric applications, Scr. Mat. 63 (2010) 1216, https://doi.org/10.1016/j.scriptamat.2010.08.039g
S. Sakurada and N. Shutoh, Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds, App. Phys. Lett. 86 (2005) 082105, https://doi.org/10.1063/1.1868063g
M. Katsnelson et al., Half-metallic ferromagnets: From band structure to many-body effects, Rev. Mod. Phys. 80 (2008) 315, https://doi.org/10.1103/RevModPhys.80.315g
R. D. Groot et al., New class of materials: half-metallic ferromagnets, Phys. Rev. Lett. 50 (1983) 2024, https://doi.org/10.1103/PhysRevLett.50.2024g
I. Galanakis Dederichs, and N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys, Phys. Rev. B 66 (2002) 174429, https://doi.org/10.1103/PhysRevB.66.174429g
M. Singh et al., Effect of substituting sp-element on half metallic ferromagnetism in NiCrSi Heusler alloy, Computational Materials Science 53 (2012) 431, https://doi.org/10.1016/j.commatsci.2011.08.037g
H. S. Saini et al., Generating magnetic response and halfmetallicity in GaP via dilute Ti-doping for spintronic applications, Journal of Alloys and Compounds 649 (2015) 184, https://doi.org/10.1016/j.jallcom.2015.06.278g
P. Brown et al., The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets, Journal of Physics: Condensed Matter 12 (2000) 1827, https://doi.org/10.1088/0953-8984/12/8/325g
P. Brown et al., Atomic order and magnetization distribution in the half metallic and nearly half metallic C1b compounds NiMnSb and PdMnSb, Journal of Physics: Condensed Matter 22 (2010) 206004, https://doi.org/10.1088/0953-8984/22/20/206004g
Y. Sakuraba et al., Huge spin-polarization of L21- ordered Co2MnSi epitaxial Heusler alloy film, Japanese journal of applied physics 44 (2005) L1100, https://doi.org/10.1143/JJAP.44.L1100g
R. Shan et al., Demonstration of halfmetallicity in fermileveltuned Heusler alloy Co 2 FeAl 0.5 Si 0.5 at room temperature, Phys. Rev. Lett. 102 (2009) 246601, https://doi.org/10.1103/PhysRevLett.102.246601g
Y. Fujita et al., Spin Transport and Relaxation up to 250 K in Heavily Doped n-Type Ge Detected Using Co 2 FeAl 0.5 Si 0.5 Electrodes, Phys. Rev. App. 8 (2017) 014007, https://doi.org/10.1103/PhysRevApplied.8.014007g
P. Webster et al., Magnetic order and phase transformation in Ni2MnGa, Philosophical Magazine B 49 (1984) 295, https://doi.org/10.1080/13642817408246515g
Please complete the information, (Ref. not found) 32. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136 (1964) B864, https://doi.org/10.1103/PhysRev.136.B864g
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865g
F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102 (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401g
H. J. Monkhorst and J. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188, https://doi.org/10.1103/PhysRevB.13.5188g
F. D. Murnaghan, The compressibility of media under extreme pressures, PNAS 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244g
P. Ravindran et al., Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2, Phys. Rev. B 59 (1999) 1776, https://doi.org/10.1103/PhysRevB.59.1776g
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kamel Hocine, G. Youcef, B. Nabil, B. Samir, M. Ahmed, C. Abdelali
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.