A lepton model with nearly Cobimaximal mixing
DOI:
https://doi.org/10.31349/RevMexFis.70.040801Keywords:
Cobimaximal; lepton mixings; DiracAbstract
Cobimaximal mixing predicts π/4 and 3π/2 for the atmospheric angle and the Dirac CP-violating phase, respectively. These values are in tension with the neutrino global fits. If this pattern was behind the lepton mixings, then it would have to be broken. In that case, in this paper, we explore the S3 flavor symmetry within the B − L gauge model where the aforementioned scheme comes from the neutrino sector but the charged lepton contribution breaks the well known predictions so the mixing observables as well as the mee mass can be accommodated quite well according to the available data. Notably, the predicted regions for the Dirac CP-violating phase would allow us to test the model in future experiments.
References
G. Aad et al. (ATLAS), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 11, https://doi.org/10.1016/j.physletb.2012.08.020
S. Chatrchyan et al. (CMS), Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30, https://doi.org/10.1016/j.physletb.2012.08.021
G. P. Salam, L.-T.Wang and G. Zanderighi, The Higgs boson turns ten, Nature 607 (2022) 41, https://doi.org/10.1038/s41586-022-04899-4
M. E. Peskin, Elementary Particle Physics Vision for EPP2024 (2023), arXiv:2302.05472 [hep-ph]
P. Minkowski, µ → e gamma at a Rate of One Out of 1- Billion Muon Decays?, Phys. Lett. B 67 (1977) 421, https://doi.org/10.1016/0370-2693(77)90435-X
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos In Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, 13-14 (1979)
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315, https://doi.org/10.1142/97898128368540018
R. N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165, https://doi.org/10.1103/PhysRevD.23.165
R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912, https://doi.org/10.1103/PhysRevLett.44.912
J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227, https://doi.org/10.1103/PhysRevD.22.2227
J. Schechter and J. W. F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774, https://doi.org/10.1103/PhysRevD.25.774
Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870, https://doi.org/10.1143/PTP.28.870
B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984
P. F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071, https://doi.org/10.1007/JHEP02(2021)071
I. Esteban et al., The fate of hints: updated global analysis of three- avor neutrino oscillations, JHEP 09 (2020) 178, https://doi.org/10.1007/JHEP09(2020)178
Z.-Z. Xing, The µ − τ reflection symmetry of Majorana neutrinos, Rept. Prog. Phys. 86 (2023) 076201, https://doi.org/10.1088/1361-6633/acd8ce
K. Fukuura, T. Miura, E. Takasugi and M. Yoshimura, Maximal CP violation, large mixings of neutrinos and democratic type neutrino mass matrix, Phys. Rev. D 61 (2000) 073002, https://doi.org/10.1103/PhysRevD.61.073002
T. Miura, E. Takasugi and M. Yoshimura, Large CP violation, large mixings of neutrinos and the Z(3) symmetry, Phys. Rev. D 63 (2001) 013001, https://doi.org/10.1103/PhysRevD.63.013001
E. Ma, The All purpose neutrino mass matrix, Phys. Rev. D 66 (2002) 117301, https://doi.org/10.1103/PhysRevD.66.117301
W. Grimus and L. Lavoura, A Nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113, https://doi.org/10.1016/j.physletb.2003.10.075
P. Chen, C.-C. Li and G.-J. Ding, Lepton Flavor Mixing and CP Symmetry, Phys. Rev. D 91 (2015) 033003, https://doi.org/10.1103/PhysRevD.91.033003
E. Ma, Neutrino mixing: A4 variations, Phys. Lett. B 752 (2016) 198, https://doi.org/10.1016/j.physletb.2015.11.049
A. S. Joshipura and K. M. Patel, Generalized µ-τ symmetry and discrete subgroups of O(3), Phys. Lett. B 749 (2015) 159, https://doi.org/10.1016/j.physletb.2015.07.062
G.-N. Li and X.-G. He, CP violation in neutrino mixing with δ = −π/2 in A4 Type-II seesaw model, Phys. Lett. B 750 (2015) 620, https://doi.org/10.1016/j.physletb.2015.09.061
H.-J. He, W. Rodejohann and X.-J. Xu, Origin of Constrained Maximal CP Violation in Flavor Symmetry, Phys. Lett. B 751 (2015) 586, https://doi.org/10.1016/j.physletb.2015.10.066
P. Chen, G.-J. Ding, F. Gonzalez-Canales and J. W. F. Valle, Generalized µ − τ reflection symmetry and leptonic CP violation, Phys. Lett. B 753 (2016) 644, https://doi.org/10.1016/j.physletb.2015.12.069
E. Ma, Soft A4 → Z3 symmetry breaking and cobimaximal neutrino mixing, Phys. Lett. B 755 (2016) 348, https://doi.org/10.1016/j.physletb.2016.02.032
A. Damanik, Neutrino masses from a cobimaximal neutrino mixing matrix (2017), arXiv:1702.03214
E. Ma, Cobimaximal neutrino mixing from S3 × Z2, Phys. Lett. B 777 (2018) 332, https://doi.org/10.1016/j. physletb.2017.12.049
W. Grimus and L. Lavoura, Cobimaximal lepton mixing from soft symmetry breaking, Phys. Lett. B 774 (2017) 325, https://doi.org/10.1016/j.physletb.2017.09.082
A. E. Carcamo Hernandez, S. Kovalenko, J. W. F. Valle and C. A. Vaquera-Araujo, Predictive Pati-Salam theory of fermion masses and mixing, JHEP 07 (2017) 118, https://doi.org/10.1007/JHEP07(2017)118
A. E. Carcamo Hernandez, S. Kovalenko, J. W. F. Valle and C. A. Vaquera-Araujo, Neutrino predictions from a leftright symmetric flavored extension of the standard model, JHEP 02 (2019) 065, https://doi.org/10.1007/JHEP02(2019)065
E. Ma, Scotogenic cobimaximal Dirac neutrino mixing from ∆(27) and U(1)χ, Eur. Phys. J. C 79 (2019) 903, https://doi.org/10.1140/epjc/s10052-019-7440-x
H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1, https://doi.org/10.1143/PTPS.183.1
W. Grimus and P. O. Ludl, Finite avour groups of fermions, J. Phys. A 45 (2012) 233001, https://doi.org/10.1088/1751-8113/45/23/233001
G. Altarelli, F. Feruglio, L. Merlo and E. Stamou, Discrete Flavour Groups, theta13 and Lepton Flavour Violation, JHEP 08 (2012) 021, https://doi.org/10.1007/JHEP08(2012)021
G. Altarelli, F. Feruglio and L. Merlo, Tri-Bimaximal Neutrino Mixing and Discrete Flavour Symmetries, Fortsch. Phys. 61 (2013) 507, https://doi.org/10.1002/prop.201200117
S. F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201, https://doi.org/10.1088/0034-4885/76/5/056201
S. F. King, Models of Neutrino Mass, Mixing and CP Violation, J. Phys. G 42 (2015) 123001, https://doi.org/10.1088/0954-3899/42/12/123001
R. M. Fonseca and W. Grimus, Classification of lepton mixing patterns from finite flavour symmetries, Nucl. Part. Phys. Proc. 273-275 (2016) 2618, https://doi.org/10.1016/j.nuclphysbps.2015.10.008
G. Chauhan et al., Discrete Flavor Symmetries and Lepton Masses and Mixings, in 2022 Snowmass Summer Study (2022) arXiv:2203.08105 [hep-ph]
R. A. Flores and M. Sher, Higgs Masses in the Standard, Multi-Higgs and Supersymmetric Models, Annals Phys. 148 (1983) 95, https://doi.org/10.1016/0003-4916(83)90331-7
A. Barroso, P. M. Ferreira and R. Santos, Tree-level vacuum stability in multi Higgs models, PoS HEP 2005 (2006) 337
S. Mantry, M. Trott and M. B. Wise, The Higgs decay width in multi-scalar doublet models, Phys. Rev. D 77 (2008) 013006, https://doi.org/10.1103/PhysRevD.77.013006
W. Grimus, L. Lavoura, O. M. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81, https://doi.org/10.1016/j.nuclphysb.2008.04.019
P. M. Ferreira and J. P. Silva, Discrete and continuous symmetries in multi-Higgs-doublet models, Phys. Rev. D 78 (2008) 116007, https://doi.org/10.1103/PhysRevD.78.116007
F. J. Botella, G. C. Branco and M. N. Rebelo, Minimal Flavour Violation and Multi-Higgs Models, Phys. Lett. B 687 (2010) 194, https://doi.org/10.1016/j.physletb.2010.03.014
P. M. Ferreira, L. Lavoura and J. P. Silva, Renormalizationgroup constraints on Yukawa alignment in multi-Higgs-doublet models, Phys. Lett. B 688 (2010) 341, https://doi.org/10.1016/j.physletb.2010.04.033
A.E. Blechman, A. A. Petrov and G. Yeghiyan, The Flavor puzzle in multi-Higgs models, JHEP 11 (2010) 075, https://doi.org/10.1007/JHEP11(2010)075
J. L. Diaz-Cruz and U. J. Saldaña Salazar, Higgs couplings and new signals from Flavon-Higgs mixing effects within multiscalar models, Nucl. Phys. B 913 (2016) 942, https://doi.org/10.1016/j.nuclphysb.2016.10.018
J. Gehrlein, S. Petcov, M. Spinrath and A. Titov, Testing neutrino flavor models, (2022), arXiv:2203.06219
F. Feruglio, Pieces of the Flavour Puzzle, Eur. Phys. J. C 75 (2015) 373, https://doi.org/10.1140/epjc/s10052-015-3576-5
G. Abbas, R. Adhikari, E. J. Chun and N. Singh, The problem of flavour (2023)
H. P. Nilles and S. Ramos-Sanchez, The Flavor Puzzle: Textures and Symmetries (2023)
J. Kubo et al., A minimal S(3)-invariant extension of the standard model, J. Phys. Conf. Ser. 18 (2005) 380, https://doi.org/10.1088/1742-6596/18/1/013
A. Mondragon, M. Mondragon and E. Peinado, Lepton masses, mixings and FCNC in a minimal S3-invariant extension of the Standard Model, Phys. Rev. D 76 (2007) 076003, https://doi.org/10.1103/PhysRevD.76.076003
A. Mondragon, M. Mondragon and E. Peinado, S(3)- flavour symmetry as realized in lepton flavour violating processes, J. Phys. A 41 (2008) 304035, https://doi.org/10.1088/1751-8113/41/30/304035
J. Barranco, F. Gonzalez Canales and A. Mondragon, Universal Mass Texture, CP violation and Quark-Lepton Complementarity, Phys. Rev. D 82 (2010) 073010, https://doi.org/10.1103/PhysRevD.82.073010
D. Meloni, S. Morisi and E. Peinado, Fritzsch neutrino mass matrix from S3 symmetry, J. Phys. G 38 (2011) 015003, https://doi.org/10.1088/0954-3899/38/1/015003
J. Kubo, Super Flavorsymmetry with Multiple Higgs Doublets, Fortsch. Phys. 61 (2013) 597, https://doi.org/10.1002/prop.201200119
F. Gonzalez Canales, A. Mondragon and M. Mondragon, The S3 Flavour Symmetry: Neutrino Masses and Mixings, Fortsch. Phys. 61 (2013) 546, https://doi.org/10.1002/prop.201200121
F. Gonzalez Canales et al., Quark sector of S3 models: classification and comparison with experimental data, Phys. Rev. D 88 (2013) 096004, https://doi.org/10.1103/PhysRevD.88.096004
A. E. Carcamo Hernandez, E. Cataño Mur and R. Martinez, Lepton masses and mixing in SU(3)C ⊗ SU(3)L ⊗ U(1)X models with a S3 flavor symmetry, Phys. Rev. D 90 (2014) 073001, https://doi.org/10.1103/PhysRevD.90.073001
A. E. Carcamo Hernandez, R. Martinez and J. Nisperuza, S3 discrete group as a source of the quark mass and mixing pattern in 331 models, Eur. Phys. J. C 75 (2015) 72, https://doi.org/10.1140/epjc/s10052-015-3278-z
A. E. Carcamo Hernandez, I. de Medeiros Varzielas and E. Schumacher, Fermion and scalar phenomenology of a two-Higgs-doublet model with S3, Phys. Rev. D 93 (2016) 016003, https://doi.org/10.1103/PhysRevD.93.016003
A. E. Carcamo Hernandez, I. de Medeiros Varzielas and N. A. Neill, Novel Randall-Sundrum model with S3 flavor symmetry, Phys. Rev. D 94 (2016) 033011, https://doi.org/10.1103/PhysRevD.94.033011
A. E. Carcamo Hernandez, A novel and economical explanation for SM fermion masses and mixings, Eur. Phys. J. C 76 (2016) 503, https://doi.org/10.1140/epjc/s10052-016-4351-y
A. E. Carcamo Hernandez, R. Martinez and F. Ochoa, Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S3 flavor symmetry, Eur. Phys. J. C 76 (2016) 634, https://doi.org/10.1140/epjc/s10052-016-4480-3
E. Ma and R. Srivastava, Dirac or inverse seesaw neutrino masses with B - L gauge symmetry and S3 flavor symmetry, Phys. Lett. B 741 (2015) 217, https://doi.org/10.1016/j.physletb.2014.12.049
J. C. Gomez-Izquierdo, Non-minimal flavored S3 Z2 left-right symmetric model, Eur. Phys. J. C 77 (2017) 551, https://doi.org/10.1140/epjc/s10052-017-5094-0
S.-F. Ge, A. Kusenko and T. T. Yanagida, Large Leptonic Dirac CP Phase from Broken Democracy with Random Perturbations (2018), https://doi.org/10.1016/j.physletb.2018.04.040
D. A. Dicus, S.-F. Ge and W. W. Repko, Neutrino mixing with broken S3 symmetry, Phys. Rev. D 82 (2010) 033005, https://doi.org/10.1103/PhysRevD.82.033005
D. Das, U. K. Dey and P. B. Pal, S3 symmetry and the quark mixing matrix, Phys. Lett. B 753 (2016) 315, https://doi.org/10.1016/j.physletb.2015.12.038
S. Pramanick and A. Raychaudhuri, Neutrino mass model with S3 symmetry and seesaw interplay, Phys. Rev. D 94 (2016) 115028, https://doi.org/10.1103/PhysRevD.94.115028
E. A. Garces, J. C. Gomez-Izquierdo and F. Gonzalez-Canales, Flavored non-minimal left-right symmetric model fermion masses and mixings, Eur. Phys. J. C 78 (2018) 812, https://doi.org/10.1140/epjc/s10052-018-6271-5
M. Fischer, S. Ramos-Sanchez and P. K. S. Vaudrevange, Heterotic non-Abelian orbifolds, JHEP 07 (2013) 080, https://doi.org/10.1007/JHEP07(2013)080
A. Davidson, SAKATA LIKE ELECTROWEAK MODEL, Phys. Lett. B 83 (1979) 73, https://doi.org/10.1016/0370-2693(79)90892-X
R. E. Marshak and R. N. Mohapatra, Quark-Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett. B 91 (1980) 222, https://doi.org/10.1016/0370-2693(80)90436-0
C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343, https://doi.org/10.1016/0550-3213(81)90279-0
A. Masiero, J. F. Nieves and T. Yanagida, B−l Violating Proton Decay and Late Cosmological Baryon Production, Phys. Lett. B 116 (1982) 11, https://doi.org/10.1016/0370-2693(82)90024-7
W. Buchmuller, C. Greub and P. Minkowski, Neutrino masses, neutral vector bosons and the scale of B-L breaking, Phys. Lett. B 267 (1991) 395, https://doi.org/10.1016/0370-2693(91)90952-M
S. Khalil, Low scale B-L extension of the Standard Model at the LHC, J. Phys. G 35 (2008) 055001, https://doi.org/10.1088/0954-3899/35/5/055001
W. Emam and S. Khalil, Higgs and Z-prime phenomenology in B-L extension of the standard model at LHC, Eur. Phys. J. C 52 (2007) 625, https://doi.org/10.1140/epjc/s10052-007-0411-7
S. Khalil and H. Okada, Dark Matter in B-L Extended MSSM Models, Phys. Rev. D 79 (2009) 083510, https://doi.org/10.1103/PhysRevD.79.083510
T. Higaki, R. Kitano and R. Sato, Neutrinoful Universe, JHEP 07 (2014) 044, https://doi.org/10.1007/JHEP07(2014)044
W. Rodejohann and C. E. Yaguna, Scalar dark matter in the B-L model, JCAP 12 (2015) 032, https://doi.org/10.1088/1475-7516/2015/12/032
O. F. Beltran, M. Mondragon and E. Rodriguez-Jauregui, Conditions for vacuum stability in an S(3) extension of the standard model, J. Phys. Conf. Ser. 171 (2009) 012028. https://doi.org/10.1088/1742-6596/171/1/012028
D. Emmanuel-Costa, O. M. Ogreid, P. Osland and M. N. Rebelo, Spontaneous symmetry breaking in the S3- symmetric scalar sector, JHEP 02 (2016) 154, [Erratum: JHEP 08 (2016) 169], https://doi.org/10.1007/JHEP02(2016)154
A. Kuncinas, O. M. Ogreid, P. Osland and M. N. Rebelo, S3 -inspired three-Higgs-doublet models: A class with a complex vacuum, Phys. Rev. D 101 (2020) 7 075052, https://doi.org/10.1103/PhysRevD.101.075052
W. Khater et al., Dark matter in three-Higgs-doublet models with S3 symmetry, JHEP 01 (2022) 120, https://doi.org/10.1007/JHEP01(2022)120
A. Kuncinas, O. M. Ogreid, P. Osland and M. N. Rebelo, Complex S3-symmetric 3HDM, JHEP 07 (2023) 013, https://doi.org/10.1007/JHEP07(2023)013
V. V. Vien, 3 + 1 active-sterile neutrino mixing in B-L model with Q4 × Z4 × Z2 symmetry for normal neutrino mass ordering, Eur. Phys. J. C 81 (2021) 416, https://doi.org/10.1140/epjc/s10052-021-09214-5
V. V. Vien, Multiscalar B-L extension with A4 symmetry for fermion mass and mixing with co-bimaximal scheme, Phys. Lett. B 817 (2021) 136296, https://doi.org/10.1016/j.physletb.2021.136296
V. V. Vien, A non-renormalizable B-L model with Q4 × Z4 × Z2 flavor symmetry for cobimaximal neutrino mixing, Chin. Phys. C 45 (2021) 123103, http://doi.org/10.1088/1674-1137/ac28f2
V. V. Vien, Neutrino mass and mixing in U(1)B − L extension with P(18) symmetry, Chin. J. Phys. 73 (2021) 47, https://doi.org/10.1016/j.cjph.2021.06.005
V. V. Vien, Fermion spectrum with normal neutrino mass ordering in a nonrenormalizable B-L model based on P(18)xZ2 symmetry, Chin. J. Phys. 77 (2022) 1976, https://doi.org/10.1016/j.cjph.2021.12.017
F. An et al. (JUNO), Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401, https://doi.org/10.1088/0954-3899/43/3/030401
B. Abi et al. (DUNE), Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics (2020)
K. Abe et al. (Hyper-Kamiokande), Hyper-Kamiokande Design Report (2018)
S. Pakvasa and H. Sugawara, Discrete Symmetry and Cabibbo Angle, Phys. Lett. B 73 (1978) 61, https://doi.org/10.1016/0370-2693(78)90172-7
J. Kubo, H. Okada and F. Sakamaki, Higgs potential in minimal S(3) invariant extension of the standard model, Phys. Rev. D 70 (2004) 036007, https://doi.org/10.1103/PhysRevD.70.036007
D. Emmanuel-Costa, O. Felix-Beltran, M. Mondragon and E. Rodriguez-Jauregui, Stability of the tree-level vacuum in a minimal S(3) extension of the standard model, AIP Conf. Proc. 917 (2007) 390, https://doi.org/10.1063/1.2751981
T. Teshima, Higgs potential in S3 invariant model for quarklepton mass and mixing, Phys. Rev. D 85 (2012) 105013, https://doi.org/10.1103/PhysRevD.85.105013
D. Das and U. K. Dey, Analysis of an extended scalar sector with S3 symmetry, Phys. Rev. D 89 (2014) 095025, [Erratum: Phys. Rev. D 91 (2015) 039905], https://doi.org/10.1103/PhysRevD.89.095025
E. Barradas-Guevara, O. Felix-Beltran and E. Rodrıguez Jauregui, Trilinear self-couplings in an S(3) flavored Higgs model, Phys. Rev. D 90 (2014) 095001, https://doi.org/10.1103/PhysRevD.90.095001
M. Gomez-Bock, M. Mondragon and A. Perez-Martınez, Scalar and gauge sectors in the 3-Higgs Doublet Model under the S3 symmetry, Eur. Phys. J. C 81 (2021) 942, https://doi.org/10.1140/epjc/s10052-021-09731-3
J. C. Gomez-Izquierdo and M. Mondragon, B-L Model with S3 symmetry: Nearest Neighbor Interaction Textures and Broken µτ Symmetry, Eur. Phys. J. C 79 (2019) 285, https://doi.org/10.1140/epjc/s10052-019-6785-5
J. D. Vergados, The Neutrinoless double beta decay from a modern perspective, Phys. Rept. 361 (2002) 1, https://doi.org/10.1016/S0370-1573(01)00068-0
W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys. E 20 (2011) 1833, https://doi.org/10.1142/S0218301311020186
J. D. Vergados, H. Ejiri and F. Simkovic, Theory of Neutrinoless Double Beta Decay, Rept. Prog. Phys. 75 (2012) 106301, https://doi.org/10.1088/0034-4885/75/10/106301
H. Pas and W. Rodejohann, Neutrinoless Double Beta Decay, New J. Phys. 17 (2015) 115010, https://doi.org/10.1088/1367-2630/17/11/115010
M. Agostini et al. (GERDA), Results on Neutrinoless Doublefi Decay of 76Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 122503, https://doi.org/10.1103/PhysRevLett.111.122503
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Juan Carlos Gómez, Asahel Enrique Pozas Ramírez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.