Caracterización mecánica de morteros en proceso de fraguado a partir de técnicas de impacto acústico y procesamiento de imágenes
DOI:
https://doi.org/10.31349/RevMexFis.71.011301Keywords:
non-destructive tests, acoustic impact, image processing, image entropy, mechanical characterizationAbstract
En el campo de la ingeniería civil es de suma importancia la determinación de la resistencia a compresión axial de los elementos estructurales de una edificación, así como el diagnóstico de los mismos durante su vida útil, esto es posible con el uso de técnicas invasivas como no invasivas. En este trabajo se presentan los resultados experimentales de pruebas destructivas y no destructivas a especímenes de morteros fabricados a diversas proporciones de agregados pétreos y sometidos a esfuerzos de compresión axial hasta el punto de falla o ruptura. El método destructivo consistió en el uso de una prensa hidráulica para someter las muestras de morteros a esfuerzos de compresión. Los métodos no destructivos considerados fueron pruebas de impacto acústico y de procesamiento de las imágenes digitales mediante patrones de luz dispersada por la superficie del mortero bajo estudio para su caracterización entrópica. Las pruebas se realizaron en muestras cúbicas de mortero a diferentes edades durante su proceso de fraguado o curado durante un periodo de análisis de 28 días. Los resultados muestran una gran afinidad entre los métodos no destructivos para la caracterización mecánica a compresión y los métodos convencionales destructivos.
In the field of civil engineering, the determination of the axial compression resistance of the structural elements of a building is of utmost importance, as well as their diagnosis during its service life. This is possible with the use of both invasive and non-invasive techniques. This work presents the experimental results of destructive and non-destructive tests on mortar specimens manufactured with various proportions of oil aggregates and subjected to axial compression stress up to the point of failure or rupture. The destructive method consisted of using a hydraulic press to subject the mortar samples to compression forces. The non-destructive methods considered were acoustic impact tests and digital image processing using light patterns scattered by the mortar’s surface under study for its entropic characterization. The tests were performed on cubic mortar samples at different ages during their setting or curing process over an analysis period of 28 days. The results show a great affinity between non-destructive methods for compression mechanical characterization and the conventional destructive methods.
References
T. Uomoto, Non-destructive testing in civil engineering 2000, 1st ed. (Elserver, Berlin, Germany, 2000), pp. 230-283
F. Pacheco-Torgal et al., Handbook of Alkali-Activated Cements, Mortars and Concretes, 1st ed. (Elsevier, 80 High St., Sawston, Cambridge, 2014), pp. 36-37
J. M. Ortega et al., Non-destructive evaluation of the effects of exposure environment in mortars using non-linear ultrasonic measurements, Developments in the Built Environment 14 (2023) 100142, https://doi.org/10.1016/j.dibe.2023.100142
A. Arizzi, J. Martınez-Martınez, and G. Cultrone, Ultrasonic wave propagation through lime mortars: an alternative and non-destructive tool for textural characterization, Materials and structures 46 (2013) 1321, https://doi.org/10.1617/s11527-012-9976-1
E. Carrasco et al., Characterization of mortars with iron ore tailings using destructive and nondestructive tests, Construction and Building Materials 131 (2017) 31, https://doi.org/10.1016/j.conbuildmat.2016.11.065
J. Žalsk’y et al., Development of a new nondestructive method for the in-situ determination of mortar strength, Buildings 13 (2023) 273, https://doi.org/10.3390/buildings13020273
I. Ivanchev, Investigation with Non-Destructive and Destructive Methods for Assessment of Concrete Compressive Strength, Appl. Sci 12 (2022) 12172, https://doi.org/10.3390/app122312172
D. S. Guzman, Tecnologıa del concreto y del mortero, 5th ed. (Pontificia Universidad Javeriana, Bogota, Colombia, 2001), pp. 45-48
C. A. Sciammarella and F. M. Sciammarella, Experimental Mechanics of Solids, 1st ed. (John Wiley & Sons, West Sussex, United Kingdom, 2012), pp. 207-249
Y.-K. Zhu et al., A review of optical NDT technologies, Sensors 11 (2011) 7773, https://doi.org/10.3390/s110807773
R. Beutel et al., Comparative performance tests and validation of NDT methods for concrete testing, Journal of Nondestructive Evaluation 27 (2008) 59, https://doi.org/10.1007/s10921-008-0037-1
K. Ramesh and S. Sasikumar, Digital photoelasticity: Recent developments and diverse applications, Optics and Lasers in Engineering 135 (2020) 106186, https://doi.org/10.1016/j.optlaseng.2020.106186
J. F. Lamond and J. H. Pielert, Significance of tests and properties of concrete and concrete-making materials, vol. 169 (ASTM international, West Conshohocken, USA, 2006), pp. 133-136
C. Maierhofer, H.-W. Reinhardt, and G. Dobmann, Nondestructive evaluation of reinforced concrete structures, 1st ed. (Elsevier, Great Abington, Cambridge, 2010), pp. 466-487
J.-P. Balayssac and V. Garnier, Non-destructive Testing and Evaluation of Civil Engineering Structures, 1st ed. (Elsevier, Great Britain and the United States, 2017), pp. 43-48
M. Ohtsu, The history and development of acoustic emission in concrete engineering, Magazine of Concrete Research 48 (1996) 321, https://doi.org/10.1680/macr.1996.48.177.321
C.-C. Cheng and M. Sansalone, Determining the minimum crack width that can be detected using the impact-echo method Part 1: Experimental study, Materials and Structures 28 (1995) 74-82, https://doi.org/10.1007/BF02473174
C.-C. Cheng and M. Sansalone, Determining the minimum crack width that can be detected using the impact-echo method Part 2. Numerical fracture analyses, Materials and Structures 28 (1995) 125-132, https://doi.org/10.1007/BF02473219
E. Hecht, Optica, 3rd ed. (Addison Wesley Iberoamericana S. A, 2000), pp. 86-100
J. Butters and J. Leendertz, Holographic and video techniques applied to engineering measurement, Measurement and Control 4 (1971) 349, https://doi.org/10.1177/002029407100401201
D. Zhu, B. Mobasher, and S. Rajan, Non-contacting strain measurement for cement-based composites in dynamic tensile testing, Cement and Concrete Composites 34 (2012) 147, https://doi.org/10.1016/j.cemconcomp.2011.09.011
H. N. Chen, R. K. L. Su, and J. J. Chen, Study on fracture properties of mortar based on electronic speckle pattern interferometry, In Materials Science Forum, vol. 893 (Trans Tech Publ, 2017) pp. 405-409, https://doi.org/10.4028/www.scientific.net/MSF.893.405
G. A. G. Mendez, Inferometıa electronica de patrones de moteado y desplazamiento de fase simultaneo usando tecnicas de polarizacion., Tesis doctoral, Centro de Investigaciones Opticas A.C. (2020), Disponible en https://cio.repositorioinstitucional.mx/jspui/handle/1002/1186
Y. Karaca, Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems, 1st ed. (Elsevier, University of Massachusetts Medical School, Worcester, MA, United States, 2022), pp. 231-243
A. S. for Testing and Materials, Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method, Vol. 04.02 ed. (Annual book of ASTM Standards, Great Abington, Cambridge, 2000), pp. 1-11
F. Duprat et al., The acoustic impulse response method for measuring the overall firmness of fruit, Journal of agricultural engineering research 66 (1997) 251, https://doi.org/10.1006/jaer.1996.0143
D. H. Pacheco, A. F. Ruiz, and A. T. Crispı, Paquete de Estadıstica Descriptiva para la Extraccion de Rasgos en Imagenes, In XIII Convention of Electrical Engineering CIE 2007 (2007) pp. 1-4
B. A. Auld, Acoustic fields and waves in solids, Vol I, 1st ed. (Wiley-Interscience publication, Stanford University, 1973), pp. 333-395
B. A. Auld, Acoustic fields and waves in solids, Vol. II, 1st ed. (Wiley-Interscience publication, Stanford University, 1973), pp. 1-12
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Itzel Luviano Soto, Yajaira Concha Sánchez, Gabriel Arroyo Correa, José Vega Cabrera
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.