Non-Hermitian transport in Glauber-Fock optical lattices
DOI:
https://doi.org/10.31349/RevMexFis.70.041303Keywords:
Glauber-Fock waveguide array; non-unitary transformation; non-hermitian hamiltoniansAbstract
The effect of a non-unitary transformation on an initial Hermitian operator is studied. The initial (Hermitian) optical system is a Glauber-Fock optical lattice. The resulting non-Hermitian Hamiltonian models an anisotropic (Glauber-Fock) waveguide array of the Hatano-Nelson-type. Several cases are analyzed and exact analytical solutions for both the Hermitian and non-Hermitian Schrödinger problems are given, as they are simply connected. Indeed, such transformation can be regarded as a non-unitary Supersymmetric transformation and the resulting non-Hermitian Hamiltonian can be considered as representing an open system that interchanges energy with the environment.
References
D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424 (2003) 817, https://doi.org/10.1038/nature01936
A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, 6th Ed. (Oxford University Press: New York, 2007)
R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg and Y. Silberberg, Experimental observation of linear and nonlinear optical Bloch oscillations, Phys. Rev. Lett. 83 (1999) 4756, https://doi.org/10.1103/PhysRevLett.83.4756
H. S. Eisenberg, Y. Silberberg, R. Morandotti and J. S. Aitchison, Diffraction management, Phys. Rev. Lett. 85 (2000) 1863, https://doi.org/10.1103/PhysRevLett.85.1863
T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer and F. Lederer, ¨ Anomalous refraction and diffraction in discrete optical systems, Phys. Rev. Lett. 88 (2002) 093901-1, https://doi.org/10.1103/PhysRevLett.88.093901
H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti and Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices, Phys. Rev. Lett. 100 (2008) 170506-1, https://doi.org/10.1103/PhysRevLett.100.170506
R. de J. Leon-Montiel and H. M. Moya-Cessa, Modeling non-linear coherent states in fiber arrays, Int. J. Quant. Information 9 (2010) 349, https://doi.org/10.1142/S0219749911007319
R. de J. Leon-Montiel, H. M. Moya-Cessa and F. Soto-Eguibar, Nonlinear coherent states for the Susskind-Glogower operators, Rev. Mex. Fıs. 57 (2011) 133, https://doi.org/10.48550/arXiv.1303.2516
A. Perez-Leija, H. M. Moya-Cessa, A. Szameit and D. N. Christodoulides, Glauber-Fock photonic lattices, Opt. Lett. 35 (2010) 2409, https://doi.org/10.1364/OL.35.002409
R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. MoyaCessa, S. Nolte, D. N. Christodoulides and A. Szameit, Classical analogue of displaced Fock states and quantum correlations in Glauber-Fock photonic lattices, Phys. Rev. Lett. 107 (2011) 103601-1, https://doi.org/10.1103/PhysRevLett.107.103601
B. M. Villegas-Mart´ınez, H. M. Moya-Cessa and F. SotoEguibar, Modeling displaced squeezed number states in waveguide arrays, Physica A: Statistical Mechanics and its applications 608 (2022) 128265, https://doi.org/10.1016/j.physa.2022.128265
R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, Discrete Talbot effect in waveguide arrays, Phys. Rev. Lett. 95 (2005) 053902, https://doi.org/10.1103/PhysRevLett.95.053902
A. Rai, G. S. Agarwal and J. H. H. Perk, Transport and quantum walk of nonclassical light in coupled waveguides, Phys. Rev. A 78 (2008) 042304-1, https://doi.org/10.1103/PhysRevA.78.042304
R. Keil, A. Perez-Leija, P. Aleahmad, H. Moya-Cessa, S. Nolte, D. N. Christodoulides and A. Szameit, Observation of Blochlike revivals in semi-infinite Glauber-Fock photonic lattices, Opt. Lett. 37 (2012) 3801–3, https://doi.org/10.1364/OL.37.003801
A. Perez-Leija, R. Keil, A. Szameit, A. F. Abouraddy, H. Moya-Cessa and D. N. Christodoulides, Tailoring the correlation and anticorrelation behavior of path-entangled photons in Glauber-Fock oscillator lattices, Phys. Rev. A 85 (2012) 013848-1, https://doi.org/10.1103/PhysRevA.85.013848
A. Szameit, F. Dreisow, H. Hartung, S. Nolte, A. Tunnermann and F. Lederer, Quasi-incoherent propagation in waveguide arrays, App. Phys. Lett. 90 (2007) 241113-1, https://doi.org/10.1063/1.2735953
Y. Bromberg, Y. Lahini, R. Morandotti and Y. Silberberg, Quantum and classical correlations in waveguide lattices, Phys. Rev. Lett. 102 (2009) 253904-1, https://doi.org/10.1103/PhysRevLett.102.253904
B. M. Rodrıguez-Lara, Exact dynamics of finite Glauber-Fock photonic lattices, Phys. Rev. A. 84 (2011) 053845-1, https://doi.org/10.1103/PhysRevA.84.053845
S. Longhi, Photonic analog of Zitterbewegung in binary waveguide arrays, Opt. Lett. 35 (2010) 235, https://doi.org/10.1364/OL.35.000235
F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tunnermann, and S. Longhi, Bloch-Zener oscillations in binary superlattices, Phys. Rev. Lett. 102 (2009) 076802, https://doi.org/10.1103/PhysRevLett.102.076802
M. Heinrich, M. A. Miri, S. Stutzer, R. El-Ganainy, S. Nolte, A. Szameit and D. N. Christodoulides, Supersymmetric mode converters, Nat. Commun. 5 (2014) 1, https://doi.org/10.1038/ncomms4698
A. Perez-Leija, H. Moya-Cessa, F. Soto-Eguibar, O. AguilarLoreto and D. N. Christodoulides, Classical analogues to quantum nonlinear coherent states in photonic lattices, Optics Communications 284 (2011) 1833 https://doi.org/10. 1016/j.optcom.2010.12.005
A. Perez-Leija, R. Keil, H. Moya-Cessa, A. Szameit and D. N. Christodoulides, Perfect transfer of path-entangled photons in Jx photonic lattices, Phys. Rev. A 87 (2013) 022303-1 https://doi.org/10.1103/PhysRevA.87.022303
A. Perez-Leija, J. C. Hernandez-Herrejon H. Moya-Cessa, A. Szameit and D. N. Christodoulides, Generating photonencoded W states in multiport waveguide-array systems, Phys. Rev. A 87 (2013) 013842-1, https://doi.org/10.1103/PhysRevA.87.013842
C. M. Bender and S. Boettcher, Real spectra in nonHermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998) 5243, https://doi.org/10.1103/PhysRevLett.80.5243
C. M. Bender, S. Boettcher and P. N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40 (1999) 2201, https://doi.org/10.1063/1.532860
A. Mostafazadeh, Exact PT symmetry is equivalent to Hermiticity, J. Phys. A: Math. Gen. 36 (2003) 7081, https://doi.org/10.1088/0305-4470/36/25/312
K. G. Makris, R. El-Ganainy, D. N. Christodoulides and Z. H. Musslimani, Beam dynamics in PT symmetric optical lattices, Phys. Rev. Lett. 100 (2008) 103904-1, https://doi.org/10.1103/PhysRevLett.100.103904
K. G. Makris, R. El-Ganainy, D. N. Christodoulides and Z. H. Musslimani, PT-symmetric optical lattices, Phys. Rev. A 81 (2010) 063807-1, https://doi.org/10.1103/PhysRevA.81.063807
S. Longhi, D. Gatti and G. D. Valle, Robust light transport in non-Hermitian photonic lattices, Sci. Rep. 5 (2015) 13376, https://doi.org/10.1038/srep13376
A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides and U. Peschel, Parity-time synthetic photonic lattices, Nature 488 (2012) 167, https://doi.org/10.1038/nature11298
C. Yuce and H. Ramezani, Diffraction-free beam propagation at the exceptional point of non-Hermitian Glauber Fock lattices, J. Opt. 24 (2022) 1, https://doi.org/10.1088/2040-8986/ac868e
S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale and A. Szameit, Topological funneling of light, Science 368 (2020) 311, https://doi.org/10.1126/science.aaz8727
S. Liu, R. Shao, S. Ma, L. Zhang, O. You, H. Wu, Y. J. Xiang, T. J. Cui and S. Zhang, Non-Hermitian skin effect in a non-Hermitian electrical circuit, Research 2021 (2021) 1, https://doi.org/10.34133/2021/5608038 35
Y. G. N. Liu, Y. Wei, O. Hemmatyar, G. G. Pyrialakos, P. S. Jung, D. N. Christodoulides and M. Khajavikhan, Complex skin modes in non-Hermitian coupled laser array, Light: Science and Applications 11 (2022) 336, https://doi.org/10.1038/s41377-022-01030-0
I. Bocanegra and H. M. Moya-Cessa, Non-Hermitian propagation in equally-spaced Hermitian waveguide arrays, https://doi.org/10.48550/arXiv.2307.06952
N. Hatano and D. R. Nelson, Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77 (1996) 570, https://doi.org/10.1103/PhysRevLett.77.570
B. M. Villegas-Martınez, F. Soto-Eguibar, S. A. Hojman, F. A. Asenjo and H. M. Moya-Cessa, Non-Hermitian dynamics from Hermitian systems: Do-it-yourself, Modern Physics Letters B 38 (2024) 2450178 https://doi.org/10.1142/S0217984924501781
C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev and D. Kip, Observation of paritytime symmetry in optics, Nat. Phys. 6 (2010) 192, https://doi.org/10.1038/nphys1515
W. H. Louisell, Quantum statistical properties of radiation, (Wiley: New York, 1990)
F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rep. 251 (1995) 267, https://doi.org/10.1016/0370-1573(94)00080-M
I. Bocanegra and S. Cruz y Cruz, Classes of balanced gainand-loss waveguides as non-Hermitian potential hierarchies, Symmetry 14 (2022) 432, https://doi.org/10.3390/sym14030432
I. Bocanegra, New families of complex hyperbolic-secant refractive-index profiles through the factorization method, J. Phys.: Conf. Ser. 2448 (2023) 012015 https://doi.org/10.1088/1742-6596/2448/1/012015
I. A. Bocanegra-Garay, L. Hernandez-Sanchez, I. Ramos-Prieto, F. Soto-Eguibar and H. M. Moya-Cessa, Optical ladder operators in the Glauber-Fock oscillator array, Phys. Scr. 99 (2024) 035216, https://doi.org/10.1088/1402-4896/ad20bd
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th Ed. (Department of commerce: USA, 1970)
I. A. Bocanegra-Garay, L. Hernandez-Sanchez, I. Ramos-Prieto, F. Soto-Eguibar and H. M. Moya-Cessa, Invariant approach to the driven Jaynes-Cummings model, SciPost Physics 16 (2024) 1, https://doi.org/10.21468/SciPostPhys.16.1.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 I. A. Bocanegra-Garay, H. M. Moya-Cessa
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.