Efectos del desorden estructural sobre el cambio en el índice de refracción de un sistema δ-dopado simple en GaAs





Delta doping; nonlinear optics; gallium arsenide; structural disorder; change in the refractive index


Partiendo de la teoría de masa efectiva y el modelo de Thomas-Fermi (TF) se ha establecido el perfil de potencial para un sistema tipo delta-dopado simple en Arseniuro de Galio (GaAs) tipo n. Resolviendo la ecuación de Schrödinger asociada al sistema, se han calculado los autovalores y las autofunciones del perfil de potencial, determinando así su estructura electrónica. Con ayuda de la teoría de Matriz Densidad se ha determinado el cambio en el índice de refracción (CIR) lineal y no lineal del sistema. De tal manera que, añadiendo un término de desorden en el sistema (ζ), es posible calcular numéricamente los cambios en la estructura electrónica y las propiedades ópticas no lineales. Se ha determinado que con valores de ζ alrededor del 10% asociado a la densidad de impurezas (N2D), el cambio en el índice de refracción lineal y no lineal no sufre cambios significativos. Por otro lado, cuando se incrementa el desorden en la densidad de impurezas introducidas en el material semiconductor, el comportamiento de la propiedad óptica se pierde por completo. Finalmente, notamos que al introducir desorden en la intensidad del laser, la propiedad óptica no sufre cambios. El presente estudio teórico podría predecir el efecto del desorden estructural sobre el comportamiento del CIR en los dispositivos basados en delta dopados al momento de su síntesis.

Starting from effective mass theory and the Thomas-Fermi (TF) model, the potential profile for a simple delta-doped system in n-type Gallium Arsenide (GaAs) has been established. By solving the Schrödinger equation associated with the system, the eigenvalues and eigenfunctions of the potential profile have been calculated, thus determining its electronic structure. So, with the Density Matrix theory, the change in the linear and nonlinear refractive index (CRI) of the system have been determined. In By introducing a disorder term in the system (ζ), it is possible to calculate numerically the changes in the electronic structure and nonlinear optical properties. Here, it has been determined that with ζ values around 10% associated with the density of impurities (N2D), the change in the linear and nonlinear refractive index does not undergo significant changes. On the other hand, On the other hand, as the disorder in the impurity density introduced into the semiconductor material increases, the optical property behavior is completely lost. Finally, we note that when introducing a disorder term in the laser intensity, the optical properties do not change significantly. This theoretical study could predict the effect of structural disorder on the behavior of CRI in delta-doped devices during their synthesis.


A. Ganguly, and R. Goswami, Low dimensional materials in nanoelectronics, in: Nanoelectronics: Physics, Materials and Devices, (Elsevier, 2023), pp. 173-192. https://doi.org/10.1016/B978-0-323-91832-9.00010-5

I. C. Cherik, and S. Mohammadi, Double quantum-well nanotube tunneling field-effect transistor, Materials Science in Semiconductor Processing 142 (2022) 106514. https://doi.org/10.1016/j.mssp.2022.106514

H. Liu, C. Song, A. Spring Thorpe, and J. Cao, Terahertz quantum-well photodetector, Applied physics letters 84 (2004) 4068, https://doi.org/10.1063/1.1751620

L.-E. Cai et al., Effect of barrier thickness on photoelectric properties of ingan/gan asymmetric multiplequantum- well structure light-emitting diode, AIP Advances 12 (2022) 065007, https://doi.org/10.1063/5.0087666

B. Roy, M. A. Billaha, R. Dutta, and D. Mukherjee, Analysis of dark current and detectivity of cds/znse based multiple quantum well photodetector for mid-infrared applications, Physica E: Low-dimensional Systems and Nanostructures 147 (2023) 115614, https://doi.org/10.1016/j.physe.2022.115614

S. Emin, S. P. Singh, L. Han, N. Satoh, and A. Islam, Colloidal quantum dot solar cells, Solar Energy 85 (2011) 1264, https://doi.org/10.1016/j.solener.2011.02.005

Y.-M. Duan, and X.-C. Li, Nonlinear optical rectification of gaas/ga1-x alxas quantum dots with hulth-en plus hellmann confining potential, Chinese Physics B 32 (2023) 017303, https://doi.org/10.1088/1674-1056/ac70bf

C. Duque et al., Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section, Journal of luminescence 143 (2013) 304, https://doi.org/10.1016/j.jlumin.2013.04.048

H. Noverola-Gamas, L. M. Gaggero-Sager, and O. Oubram, Model of n-type quadruple δ-doped Gaas quantum wells, The European Physical Journal B 93 (2020) 1, https://doi.org/10.1140/epjb/e2019-100412-7

L. I. Berger, Semiconductor materials, (CRC press, 2020)

K. Inoue, H. Sakaki, J. Yoshino, and T. Hotta, Self-consistent calculation of electronic states in algaas/gaas/algaas selectively doped double-heterojunction systems under electric fields, Journal of applied physics 58 (1985) 4277, https://doi.org/10.1063/1.335563

C. Wood, G. Metze, J. Berry, and L. Eastman, Complex freecarrier profile synthesis by atomicplane doping of mbe gaas, Journal of Applied Physics 51 (1980) 383, https://doi.org/10.1063/1.327383

T. Carns, X. Zheng, and K. Wang, Enhancement of si hole mobility in coupled delta-doped wells, Applied physics letters 62 (1993) 3455, https://doi.org/10.1063/1.109047

V. Gurtovoi, V. Valyaev, S. Y. Shapoval, and A. Pustovit, Electron transport properties of double delta-doped gaas structures grown by low-pressure metalorganic chemical vapor deposition, Applied physics letters 72 (1998) 1202, https://doi.org/10.1063/1.121013

I. Rodriguez-Vargas, L. M. Gaggero-Sager, and V. Velasco, Thomas-fermi-dirac theory of the hole gas of a double p-type δ-doped gaas quantum wells, Surface science 537 (2003) 75, https://doi.org/10.1016/S0039-6028(03)00546-6

I. Rodriguez-Vargas, and L. Gaggero-Sager, Subband and transport calculations in double n-type δ-doped quantum wells in si, Journal of applied physics 99 (2006) 033702, https://doi.org/10.1063/1.2168024

K. Ploog, Delta-(δ) doping in mbe-grown gaas: concept and device application, Journal of Crystal Growth 81 (1987) 304, https://doi.org/10.1016/0022-0248(87)90409-X

G. Scappucci et al., Bottom-up assembly of metallic germanium, Scientific reports 5 (2015) 12948, https://doi.org/10.1038/srep12948

C.-H. Lin et al., δ-doped mos ge/si quantum dot/well infrared photodetector, Thin Solid Films 508 (2006) 389, https://doi.org/10.1016/j.tsf.2005.06.109

M. Lachab et al., Mbe growth and transport properties of silicon δ-doped gaas/alas quantum well structures for terahertz frequency detection, Journal of crystal growth 312 (2010) 1761, https://doi.org/10.1016/j.jcrysgro.2010.02.018

C. Duque et al., About possible thz modulator on the base of delta-doped qws, Superlattices and Microstructures 87 (2015) 5, https://doi.org/10.1016/j.spmi.2015.07.048

K. Rodrıguez-Magdaleno, A. Turkoglu, F. Ungan, M. MoraRamos, and J. Martınez-Orozco, Donor impurity atom effect on the inter-subband absorption coefficient for symmetric double n-type δ-doped gaas quantum well, Superlattices and Microstructures 156 (2021) 106988, https://doi.org/10.1016/j.spmi.2021.106988

O. Oubram, O. Navarro, I. Rodriguez-Vargas, L. M. Gaggero-Sager, and H. Noverola, Controlling the optical absorption properties of δ-fets by means of contact voltage and hydrostatic pressure effects, Superlattices and Microstructures 127 (2019) 157, https://doi.org/10.1016/j.spmi.2017.11.062

V. Akimov et al., Study of delta-doped quantum wells (2022)

H. Schneider, and H. C. Liu, Quantum well infrared photodetectors (2007)

H. Wang et al., Broadband bias-tunable terahertz photodetector using asymmetric gaas/algaas step multi-quantum well, Applied Physics Letters 113 (2018) 171107, https://doi.org/10.1063/1.5046881

H. Liu et al., Terahertz quantum well photodetectors, IEEE Journal of Selected Topics in Quantum Electronics 14 (2008) 374, https://doi.org/10.1109/JSTQE.2007.910710

R. Restrepo, L. Castano-Vanegas, J. Martınez-Orozco, A. Morales, and C. Duque, Mid-infrared linear optical transitions in δ-doped algaas/gaas triple-quantum well, Applied Physics A 125 (2019) 31, https://doi.org/10.1007/s00339-018-2321-y

H. Sari et al., Nonlinear optical properties of asymmetric n-type double δ-doped gaas quantum well under intense laser field, The European Physical Journal B 90 (2017) 162, https://doi.org/10.1140/epjb/e2017-80210-9

H. Noverola-Gamas, L. M. Rojas, S. Azalim, and O. Oubram, Disorder effect on intersubband optical absorption of n-type δdoped quantum well in gaas, Journal of Physics: Condensed Matter 35 (2023) 405602, https://doi.org/10.1088/1361-648X/ace2a4

H. Bao, and X. Ruan, Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications, Optics letters 35 (2010) 3378, https://doi.org/10.1364/OL.35.003378

I. Friel, C. Thomidis, and T. Moustakas, Well width dependence of disorder effects on the optical properties of algan/gan quantum wells, Applied physics letters 85 (2004) 3068, https://doi.org/10.1063/1.1804253

A. Saffarzadeh, and L. Gharaee, Optical absorption spectrum in disordered semiconductor multilayers, Journal of Applied Physics 107 (2010) 104322, https://doi.org/10.1063/1.3428476

S. Melkoud, A. Nafidi, and D. Barkissy, Effect of wells thicknesses disorder on quantum magnetotransport properties in GaAs/AlxGa1-xAs multi-quantum wells near wavelength infrared detectors, Micro and Nanostructures 163 (2022) 107138, https://doi.org/10.1016/j.spmi.2021.107138

A. Sasaki, M. Kasu, T. Yamamoto, and S. Noda, Proposal and experimental results of disordered crystalline semiconductors, Japanese journal of applied physics 28 (1989) L1249, https://doi.org/10.1143/JJAP.28.L1249

I. Rodriguez-Vargas, and L. M. Gaggero-Sager, Subband structure comparison between n-and ptype double delta-doped gaas quantum wells, Rev. Mex. Fis. 50 (2004) 614

H. Noverola-Gamas, L. M. Gaggero-Sager, and O. Oubram, Nonlinear optical properties in n-type quadruple δ-doped gaas quantum wells, Chinese Physics B 31 (2022) 044203, https://doi.org/10.1088/1674-1056/ac248e

L. Ioriatti, Thomas-fermi theory of δ-doped semiconductor structures: Exact analytical results in the high-density limit, Physical Review B 41 (1990) 8340, https://doi.org/10.1103/PhysRevB.41.8340

S. Lundqvist, and N. H. March, Theory of the inhomogeneous electron gas, Springer (Science & Business Media, 2013)

K. J. Kuhn, G. U. Iyengar, and S. Yee, Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in alxga1-xas/gaas/alxga1-xas quantum wells, Journal of Applied Physics 70 (1991) 5010, https://doi.org/10.1063/1.349005

H. Noverola-Gamas, L. M. Gaggero-Sager, and O. Oubram, Hydrostatic pressure and interlayer distance effects on nonlinear optical proprieties in n-type double delta-doped gaas quantum wells, Physica Scripta 95 (2020) 095813, https://doi.org/10.1088/1402-4896/abb10f

D. Ahn, and S.-l. Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field, IEEE Journal of Quantum Electronics 23 (1987) 2196, https://doi.org/10.1109/JQE.1987.1073280




How to Cite

H. Noverola-Gamas, F. Martínez-Solís, and O. Oubram, “Efectos del desorden estructural sobre el cambio en el índice de refracción de un sistema δ-dopado simple en GaAs”, Rev. Mex. Fís., vol. 70, no. 4 Jul-Aug, pp. 041001 1–, Jul. 2024.