Numerical investigation into the Nd doped YAG rod grooving impact on the sunlight-pumped-laser performance

Authors

  • Said Mehelloua University of El Oued
  • Noureddine Hamrouni University of El Oued
  • Rehouma Ferhat University of El Oued

DOI:

https://doi.org/10.31349/RevMexFis.70.041301

Keywords:

Sunlight-pumped-laser; ring-array sunlight flux concentrator; grooved laser rod; end-exciting method; side-exciting configuration

Abstract

This paper presents a numerical analysis of the impact of grooving the Nd doped YAG rod on the sunlight-pumped lasers performance. The study analyzes laser systems that utilize side-exciting and end-side-exciting approaches to activate both grooved and non-grooved Nd doped YAG laser rods. The effects of the rod surface groove on the performance of the sunlight-pumped-lasers are thoroughly examined using ZEMAX© and LASCAD© software. To excite the grooved and non-grooved Nd doped YAG rods alternately, a ring-array sunlight flux concentrator is employed. Moreover, in the side-exciting technique, the head of the laser system contains a rectangular light guide of an extremely transparent glass made from fusing silica and an excitation cavity with a V-shaped configuration, housing the Nd doped YAG rod. This exciting method with a grooved laser rod resulted in a 13.70% increase in laser power and a 28.20% reduction in stress intensity compared to the non-grooved rod. In the end-side-exciting technique, the head of the laser system comprises an aspheric lens made of a fused silica glass and a conical-shaped excitation cavity, accommodating the Nd doped YAG rod. Results indicate that using grooved laser rod in this exciting system did not lead to an amelioration in output laser power. However, this technique enhanced the stress intensity by a reduction of 35.03%.

References

Z. J. Kiss, H.R. Lewis, R. C. Duncan, Sun pumped continuous optical maser, Appl. Phys. Lett., 2 (1963) 93, https://doi.org/10.1063/1.1753794

C. G. Young, A Sun-Pumped c. w. One-Watt Laser, Opt., 5 (1966) 993, https://doi.org/10.1364/AO.5.000993

H. Arashi et al., A Solar-Pumped c. w. 18 W Nd: YAG, Laser. Jpn. J. Appl. Phys., 23 (1984) 1051, https://doi.org/10.1143/JJAP.23.1051

M. Weksler and J. Shwartz, Solar-pumped solid-state lasers, IEEE J. Quantum Electron., 24 (1988) 1222, https://doi.org/10.1109/3.247

V. P. Vasylyev, O. G. Tovmachenko, and S. V. Vasylyev, Expected optical performances of novel type multi-element highheat solar concentrators, in Proc. ASES Conf., (2002)

M. Lando et al., High-brightness solar-pumped Nd: YAG laser design, Proc. SPIE 2426 (1995) 478, https://doi.org/10.1117/12.211229

M. Lando, J. Kagan, B. Linyekin, V. Dobrusin, A solarpumped Nd: YAG laser in the high collection efficiency regime, Opt. Commun., 222 (2003) 371, https://doi.org/10.1016/S0030-4018(03)01601-8

B. Zhao et al., The study of active medium for solar-pumped solid-state lasers, Acta Opt. Sin., 27 (2007) 1797

T. Saiki et al., Oscillation property of rod type Nd/Cr: YAG ceramic lasers with quasi-solar pumping, in Conference on Lasers and Electro-Optics (CLEO) (IEEE), Paper No. CThT3, (2007), https://doi.org/10.1109/CLEO.2007.4452870

T. Yabe et al., High efficiency and economical solar energy pumped laser with Fresnel lens and chromium co-doped laser medium, Appl. Phys. Lett. 90 (2007) 261120, https://doi.org/10.1063/1.2753119

T. Ohkubo, et al., Solar-pumped 80 W laser irradiated by a Fresnel lens, Optics Letters, 34 (2009) 175, https://doi.org/10.1364/OL.34.000175

T. H. Dinh, T. Ohkubo, T. Yabe, H. Kuboyama, 120-watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd: YAG rod, Opt. Lett., 37 (2012) 2670, https://doi.org/10.1364/OL.37.002670

P. Xu et al., High-efficiency solar-pumped laser with a grooved Nd: YAG rod, Appl. Opt. 53 (2014) 3941, https://doi.org/10.1364/AO.53.003941

S. Payziyev and Kh. Makhmudov, A new approach in solarto-laser power conversion based on the use of external solar spectrum frequency converters, Journal of Renewable and Sustainable Energy, 8 (2016) 015902, https://doi.org/10.1063/1.4939505

S. Payziyev et al., Simulation of a new solar Ce: Nd: YAG laser system, Optik, 156 (2018) 891, https://doi.org/10.1016/j.ijleo.2017.12.071

S. Payziyev et al., Luminescence sensitization properties of Ce: Nd: YAG materials for solar pumped lasers, Opt. Commun. 499 (2021) 127283, https://doi.org/10.1016/j.optcom.2021.127283

R. Bouadjemine et al., Stable TEM00-mode Nd: YAG solar laser operation by a twisted fused silica light-guide, Opt. Laser Tech. 97 (2017) 1, https://doi.org/10.1016/j.optlastec.2017.06.003

S. Mehellou et al., Stable solar-pumped TEM00-mode 1064nm laser emission by a monolithic fused silica twisted light guide, Sol. Energy, 155, (2017) 1059, https://doi.org/10.1016/j.solener.2017.07.048

S. Mehellou et al., The Effects of the Pumping Configurations on TEM00 Mode Nd: YAG Solar Laser Performance: a Review, Brazilian Journal of Physics, 52 (2022) 169, https://doi.org/10.1007/s13538-022-01163-y

Z. Guan et al., Low-threshold and high-efficiency solarpumped laser with Fresnel lens and a grooved Nd: YAG rod, High-Power Lasers and Applications VIII, Proc. of SPIE 10016 (2016) 1001609, https://doi.org/10.1117/12.2245281

Z. Guan et al., 32.1 W/m2 c. w. solar-pumped laser with a bonding Nd: YAG/YAG rod and a Fresnel lens, Opt. Laser Technol. 107 (2018) 158, https://doi.org/10.1016/j.optlastec.2018.05.039

T. Masuda et al., A fully planar solar pumped laser based on a luminescent solar collector, Communications Physics 3 (2020), https://doi.org/10.1038/s42005-020-0326-2

D. Liang and J. Almeida, Highly efficient solar-pumped Nd: YAG laser, Optics express, 19 (2011) 26399, https://doi.org/10.1364/OE.19.026399

D. Liang, J. Almeida, and E. Guillot, Side-pumped continuous-wave Cr: Nd: YAG ceramic solar laser, Applied Physics B, 111 (2013) 305. https://doi.org/10.1007/s00340-013-5334-4

D. Liang and J. Almeida, Solar-pumped TEM00 mode Nd: YAG laser, Optics express, 21 (2013) 25107, https://doi.org/10.1364/OE.21.025107

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, Solarpumped TEM00 mode Nd: YAG laser by a heliostat-parabolic mirror system, Solar Energy Materials and Solar Cells, 134 (2015) 305, https://doi.org/10.1016/j.solmat.2014.12.015

D. Liang et al., High-efficiency solar-pumped TEM00-mode Nd: YAG laser, Solar Energy Materials and Solar Cells, 145 (2016) 397, https://doi.org/10.1016/j.solmat.2015.11.001

D. Liang, J. Almeida, and C. R. Vistas, 25W/m2 collection efficiency solar pumped Nd: YAG laser by a heliostat-parabolic mirror system, Appl. Opt., 55 (2016) 7712, https://doi.org/10.1364/AO.55.007712

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, Solarpumped Nd: YAG laser with 31.5 W/m2 multimode and 7.9 W/m2 TEM00-mode collection efficiencies, Sol. Energy Mat. Sol. Cells 159 (2017) 435, https://doi.org/10.1016/j.solmat.2016.09.048

D. Liang, C. R. Vistas, B. D. Tiburcio, J. Almeida, Solar pumped Cr: Nd: YAG ceramic laser with 6.7% slope efficiency, Sol. Energy Mater. Sol. Cells, 185 (2018) 75, https://doi.org/10.1016/j.solmat.2018.05.020

D. Liang et al., Side-pumped continuous-wave Nd: YAG solar laser with 5.4% slope efficiency, Sol. Energy Mater. Sol. Cells, 192 (2019) 147, https://doi.org/10.1016/j.solmat.2018.12.029

D. Liang et al., Simultaneous solar laser emissions from three Nd: YAG rods within a single pump cavity, Solar Energy, 199 (2020) 192, https://doi.org/10.1016/j.solener.2020.02.027

D. Liang et al., Seven-rod pumping approach for the most efficient production of TEM00 mode solar laser power by a Fresnel lens, Journal of solar energy engineering, 143 (2021) 061004, https://doi.org/10.1115/1.4051223

D. Liang et al., Most efficient simultaneous solar laser emissions from three Ce: Nd: YAG rods within a single pump cavity, Solar energy materials and solar cells, 246 (2022) 111921, https://doi.org/10.1016/j.solmat.2022.111921

D. Liang et al., Solar-Pumped Lasers, Green Energy and Technology, Springer Nature Switzerland AG, (2023), https://doi.org/10.1007/978-3-031-24785-9

J. Almeida, D. Liang, and E. Guillot, Improvement in solarpumped Nd: YAG laser beam brightness, Optics & Laser Technology, 44 (2012) 2115, https://doi.org/10.1016/j.optlastec.2012.03.017

J. Almeida, D. Liang, E. Guillot, and Y. Abdel-Hadi, A 40W c.w. Nd: YAG solar laser pumped through a heliostat: a parabolic mirror system, Laser Physics, 23 (2013) 065801, https://doi.org/10.1088/1054-660X/23/6/065801

J. Almeida, D. Liang, C. R. Vistas, and E. Guillot, Highly efficient end-side-pumped Nd: YAG solar laser by a heliostatparabolic mirror system, Applied optics, 54 (2015) 1970, https://doi.org/10.1364/AO.54.001970

J. Almeida, D. Liang, R. Bouadjemine, and E. Guillot, 5.5W continuous-wave TEM00-mode Nd: YAG solar laser by a light-guide/2V-shaped pump cavity, Applied Physics B, 121 (2015) 473, https://doi.org/10.1007/s00340-015-6257-z

J. Almeida, D. Liang, and C. R. Vistas, A doughnutshaped Nd: YAG solar laser beam, Optics and Laser Technology, 106 (2018) 1, https://doi.org/10.1016/j. optlastec.2018.03.029

J. Almeida et al., Numerical modeling of a four-rod pumping scheme for improving TEM00-mode solar laser performance, Journal of Photonics for Energy, 9 (2019) 018001, https://doi.org/10.1117/1.JPE.9.018001

J. Almeida et al., Seven-rod pumping concept for simultaneous emission of seven TEM00-mode solar laser beams, Journal of Photonics for Energy, 10 (2020) 038001, https://doi.org/10.1117/1.JPE.10.038001

J. Almeida et al., 40 W continuous wave Ce: Nd: YAG solar laser through a fused silica light guide, Energies, 15 (2022) 3998, https://doi.org/10.3390/en15113998

C. R. Vistas, D. Liang, and J. Almeida, Solar-pumped TEM00 mode laser simple design with a grooved Nd: YAG rod, Solar Energy, 122 (2015) 1325, https://doi.org/10.1016/j.solener.2015.10.049

C. R. Vistas, D. Liang, J. Almeida, and E. Guillot, Solarpumped TEM00 mode laser simple design with a grooved Nd: YAG rod, Optics Communications, 366 (2016) 50, https://doi.org/10.1016/j.optcom.2015.12.038

C. R. Vistas et al., A doughnut-shaped Nd: YAG solar laser beam with 4.5 W/m2 collection efficiency, Solar Energy, 182 (2019) 42, https://doi.org/10.1016/j.solener.2019.02.030

C. R. Vistas et al., Ce: Nd: YAG continuous-wave solarpumped laser, Optik, 207 (2020) 163795, https://doi.org/10.1016/j.ijleo.2019.163795

C. R. Vistas et al., 32W TEM00-Mode Side-Pumped Solar Laser Design, Applied Solar Energy, 56 (2020) 449, https://doi.org/10.3103/S0003701X20060122

C. R. Vistas et al., Ce: Nd: YAG side-pumped solar laser, Journal of Photonics for Energy, 11 (2021) 018001, https://doi.org/10.1117/1.JPE.11.018001.

C. R. Vistas et al., Uniform and non-uniform pumping effect on Ce: Nd: YAG side-pumped solar laser output performance, Energies, 15 (2022) 3577, https://doi.org/10.3390/en15103577

C. R. Vistas et al., Fresnel Lens Solar Pumping for Uniform and Stable Emission of Six Sustainable Laser Beams under NonContinuous Solar Tracking, Sustainability, 15 (2023) 8218, https://doi.org/10.3390/su15108218

C. R. Vistas et al., High Brightness Ce: Nd: YAG Solar Laser Pumping Approach with 22.9W/m2 TEM00-Mode Collection Efficiency, Energies, 16 (2023) 5143, https://doi.org/10.3390/en16135143

D. Garcia et al., A three-dimensional ring-array concentrator solar furnace, Solar Energy, 193 (2019) 915, https://doi.org/10.1016/j.solener.2019.10.016

D. Garcia et al., Analytical and numerical analysis of a ring-array concentrator, International Journal of Energy Research, 45 (2021) 15110, https://doi.org/10.1002/er.6787

D. Garcia et al., Elliptical-shaped Fresnel lens design through Gaussian source distribution, Energies, 15 (2022) 668, https://doi.org/10.3390/en15020668

D. Garcia et al., Ce: Nd: YAG solar laser with 4.5% solar-tolaser conversion efficiency, Energies, 15 (2022) 5292, https://doi.org/10.3390/en15145292

D. Garcia et al., Lowest-threshold solar laser operation under cloudy sky condition, Renewable Energy, 210 (2023) 127, https://doi.org/10.1016/j.renene.2023.03.124

D. Garcia et al., Efficient Production of Doughnut-Shaped Ce: Nd: YAG Solar Laser Beam, Sustainability, 15 (2023) 13761, https://doi.org/10.3390/su151813761

R. Matos et al., High-efficiency solar laser pumping by a modified ring-array concentrator, Optics Communications, 420 (2018) 6, https://doi.org/10.1016/j.optcom.2018.03.027

B. D. Tiburcio et al., Improving solar-pumped laser efficiency by a ring-array concentrator, J. Photon. Energy 8 (2018) 018002, https://doi.org/10.1117/1.JPE.8.018002

B. D. Tiburcio et al., Dual-rod pumping concept for TEM00- mode solar lasers, Applied Optics, 58 (2019) 3438, https://doi.org/10.1364/AO.58.003438

B. D. Tiburcio et al., Highly efficient side-pumped solar laser with enhanced tracking-error compensation capacity, Optics Communications, 460 (2020) 125156, https://doi.org/10.1016/j.optcom.2019.125156

B. D. Tiburcio et al., Tracking error compensation capacity measurement of a dual-rod side-pumping solar laser, Renewable Energy, 195 (2022) 1253, https://doi.org/10.1016/j.renene.2022.06.114

B. D. Tiburcio et al., Enhancing TEM00-mode solar laser with beam merging and ring-array concentrator, Journal of Solar Energy Engineering, 144 (2022) 061005, https://doi.org/10.1115/1.4054666

B. D. Tiburcio et al., Fresnel Lens Solar-Pumped Laser with Four Rods and Beam Merging Technique for Uniform and Stable Emission under Tracking Error Influence, Energies, 16 (2023) 4815, https://doi.org/10.3390/en16124815

H. Costa et al., Design of a multi-beam solar laser station for a megawatt solar furnace, Optical Engineering, 59 (2020) 086103, https://doi.org/10.1117/1.OE.59.8.086103

H. Costa et al., Quasi-Gaussian multi beam solar laser station for a megawatt solar furnace, Journal of Solar Energies Research Updates, 8 (2021) 11, https://doi.org/10.31875/2410-4701.2021.08.02

H. Costa et al., Zigzag multirod laser beam merging approach for brighter TEM00-mode solar laser emission from a megawatt solar furnace, Energies, 14 (2021) 5437, https://doi.org/10.3390/en14175437

H. Costa et al., Multirod approach to enhance solar-to-laser conversion efficiency in the Odeillo solar furnace, Journal of Photonics for Energy, 12 (2022) 048001, https://doi.org/10.3390/en14175437

H. Costa et al., Seven-rod pumping concept for highly stable solar laser emission, Energies, 15 (2022) 9140, https://doi.org/10.3390/en15239140

H. Costa et al., Seven-grooved-rod, side-pumping concept for highly efficient TEM00-mode solar laser emission through Fresnel lenses, Photonics, 10 (2023) 620, https://doi.org/10.3390/photonics10060620

R. Boutaka et al., A Compact Solar Laser Side-Pumping Scheme Using Four Off-Axis Parabolic Mirrors, J. Russ. Laser Res., 42 (2021) 453, https://doi.org/10.1007/s10946-021-09982-1

M. Catela et al., Doughnut-shaped and top hat solar laser beams numerical analysis, Energies, 14 (2021) 7102, https://doi.org/10.3390/en14217102

M. Catela et al., Highly efficient four-rod pumping approach for the most stable solar laser emission, Energies, 13 (2022) 1670, https://doi.org/10.3390/mi13101670

M. Catela et al., Stable emission of solar laser power under noncontinuous solar tracking conditions, Applied Optics, 62 (2023) 2697, https://doi.org/10.1364/AO.485158

M. Catela et al., Solar laser pumping approach for both simultaneous and stable multi beam operation under tracking error condition, Journal of Photonics for Energy, 13 (2023) 028001, https://doi.org/10.1117/1.JPE.13.028001

M. Catela et al., Solar laser pumping approach for both simultaneous and stable multi beam operation under tracking error condition, Journal of Photonics for Energy, 13 (2023) 028001, https://doi.org/10.1117/1.JPE.13.028001

M. Catela et al., Stable emissions from a four-rod Nd: YAG solar laser with ±0.5 ◦ tracking error compensation capacity, Photonics, 10 (2023) 1047, https://doi.org/10.3390/photonics10091047

S. Berwal et al., A review on design modalities of solar-pumped solid-state laser, Applied Surface Science Advances, 12 (2022) 100348, https://doi.org/10.1016/j.apsadv.2022.100348

Z. Cai et al., Efficient 38.8W/m2 solar pumped laser with a Ce: Nd: YAG crystal and a Fresnel lens, Optics Express, 31 (2023) 1341, https://doi.org/10.1364/OE.481590

W. Koechner, Solid-State Laser Engineering, 5th ed. (SpringerVerlag, Berlin, Heidelberg, New York, 1999)

Downloads

Published

2024-07-01

How to Cite

[1]
M. SAID, N. Hamrouni, and R. Ferhat, “Numerical investigation into the Nd doped YAG rod grooving impact on the sunlight-pumped-laser performance”, Rev. Mex. Fís., vol. 70, no. 4 Jul-Aug, pp. 041301 1–, Jul. 2024.