Local structure modeling of iron doped triglycine sulphate single crystals

Authors

  • M. Bharati Department of Physics, Nehru Gram Bharti (DU)
  • V. Singh Department of Physics, Nehru Gram Bharti (DU)
  • Ram Kripal University of Allahabad

DOI:

https://doi.org/10.31349/RevMexFis.71.010501

Keywords:

Organic compounds; single crystal; crystal fields; electron paramagnetic resonance; zero field splitting

Abstract

Zero field splitting parameters of iron doped triglycine sulphate single crystals are evaluated with the help of superposition model and the perturbation theory. These parameters are in reasonable agreement with the experimental values taking local distortion into account. The theoretical result supports the experimental observation that iron occupies interstitial position in triglycine sulphate crystal. Using crystal field analysis program with crystal field parameters from superposition model as input, the optical spectra of the system are computed. A reasonable match between the computed and experimental energy values is obtained. Thus the theoretical investigation supports the experimental conclusion. The present modeling approach may be useful in other ion-host systems to explore crystals for technological and industrial applications.

References

F. E. Mabbs, D. Collison and D. Gatteschi, Electron Paramagnetic Resonance of d Transition Metal Compounds; (Elsevier, Amsterdam, 1992)

J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications; 2nd ed., (Wiley, New York, 2007)

D. J. Newman, On the g-shift of S-state ions. J. Phys. C: Solid State Phys. 10 (1977) L315, https://doi.org/10.1088/0022-3719/10/11/008

E. Siegel, K. A. Muller, Local position of Fe3+ in ferroelectric BaTiO3. Phys. Rev. B, 20 (1979) 3587, https://doi.org/10.1103/PhysRevB.20.3587

Y. Y. Yeung, Local distortion and zero-field splittings of 3d5 ions in oxide crystals. J. Phys. C: Solid State Phys. 21 (1988) 2453, https://doi.org/10.1088/0022-3719/21/13/010

T. H. Yeom, S. H. Choh, M. L. Du, A theoretical investigation of the zero-field splitting parameters for an Mn2+ centre in a BiVO4 single crystal. J. Phys.: Condens. Matter 5 (1993) 2017, https://doi.org/10.1088/0953-8984/5/13/017

R. R. Sharma, Spin-Lattice Coupling Constants of an Fe3+ Ion in MgO, Phys. Rev. 176 (1968) 467, https://doi.org/10.1103/PhysRev.176.467

R. R. Sharma, Zero-Field Splitting of a 6 S Ion in Trigonal Symmetry, Phys. Rev. B 3 (1971) 76, https://doi.org/10.1103/PhysRevB.3.76

W. L. Yu, Cubic zero-field splitting of a 6 S state ion. Phys. Rev. B, 39 (1989) 622, https://doi.org/10.1103/PhysRevB.39.622

W. C. Zheng, S. Y. Wu, Theoretical investigations of the temperature dependence of zero-field splitting for in crystals, J. Phys.: Condms. Mutter. 9 (1997) 5081, https://doi.org/10.1088/0953-8984/9/24/008

B. Subramanian, H. C. Zeng, Water-assisted reconstruction on ferroelectric domain ends of triglycine sulfate (NH2CH2COOH)3Aˆ ·H2SO4 crystals, J. Mater. Chem. 10 (2000) 651, https://doi.org/10.1039/A907937H

M. D. Aggarwal et al., Pyroelectric materials for uncooled infrared detectors : processing, properties, and applications. National Aeronautics and Space Administration, Marshall Space Flight Center. OCLC 754804811 (2010)

A. Nautiyal, T C Upadhyay, Theory of Iron Doped Deuterated Triglycine Sulphate Doped Ttriglycine Sulphate (Fe-DTGS) Crystal, Int. J. Chem. Sci. Appl., 4 (2013) 29

J. Stankowski, Molecular dynamics of ferroelectric crystals of the triglycine sulphate family, Phys. Rep. 77 (1981) 1, https://doi.org/10.1016/0370-1573(81)90005-3

J. Stankowski, A. Wieckowski, S. Hedewy, Second-Order Effects and Hyperfine Structure of Nitrogen and Hydrogen in the EPR Spectrum of Glycine Chelate with 63Cu2+ in Triglycine Sulphate, J. Magn. Reson. 15 (1974) 498, https://doi.org/10.1016/0022-2364(74)90151-6

A. K. Abass, F. Y. M. Al-Eithan, Absorption Edge Measurements of Ttriglycime Sulfate Single Crystal Doped withChromium, J. Phys. Chem. Solids 47 (1986) 933, https://doi.org/10.1016/0022-3697(86)90104-6

W. Windsch, G. Volkel, Electron Paramagnetic Resonance Investigations of Cr3 Doped Ferroelectric Triglycine Sulphate Monocrystals: Part 1: Structural Change During Phase Transition, Ferroelectrics 9 (1975) 187, https://doi.org/10.1080/00150197508237722

Sz. Los, Z. Trybula, EPR Study of Fe3+ Paramagnetic Centers in Doped Triglycine Sulphate Crystals, Acta Phys. Polon. A 101 (2002) 279, https://doi.org/10.12693/aphyspola.101.279

I. E. G. Morrison, L. V. C. Rees, J. Silver, E. A. D. White, Mossbauer investigation of iron-doped triglycine sulphate, J. Chem. Soc. Dalton Trans. (1976) 1103, https://doi.org/10.1039/DT9760001103

W. L. Yu, M.G. Zhao, Spin-Hamiltonian parameters of 6 S state ions. Phys. Rev. B 37 (1988) 9254, https://doi.org/10. 1103/PhysRevB.37.9254

S. Hoshino, Y. Okaya, R. Pepinsky, Crystal Structure of the Ferroelectric Phase of (Glycine)3Aˆ ·H2SO4, Phys. Rev. 115 (1959) 323, https://doi.org/10.1103/PhysRev.115.323

A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions; (Clarendon Press, Oxford, 1970)

C. Rudowicz, Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review. Magn. Reson. Rev. 13 (1987) 1

C. Rudowicz and H. W. F. Sung, Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?. Physica B: Cond. Matt. 300 (2001) 1, https://doi.org/10.1016/S0921-4526(01)00568-3

C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, Electron paramagnetic resonance of Fe3+ ions in (NH4)2SbF5. J. Chem. Phys. 62 (1975) 4948, https://doi.org/10.1063/1.430410

C. Rudowicz, R. Bramley, On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. J. Chem. Phys. 83 (1985) 5192, https://doi.org/10.1063/1.449731

B. N. Figgis, M. A. Hitchman, Ligand Field Theory and its Applications; (Wiley, New York, 2000)

T. H. Yeom, S. H. Choh, M. L. Du, M. S. Jang, EPR study of Fe3+ impurities in crystalline BiVO4. Phys. Rev. B 53 (1996) 3415, https://doi.org/10.1103/PhysRevB.53.3415

C. Rudowicz, S. K. Misra, Spin-Hamiltonian formalisms in electron magnetic resonance (EMR) and related spectroscopies. Appl. Spectrosc. Rev. 36 (2001) 11, https://doi.org/10.1081/ASR-100103089

Z. Y. Yang, C. Rudowicz, Y. Y. Yeung, Microscopic spinHamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Physica B: Cond. Matt. 348 (2004) 151, https://doi.org/10.1016/j.physb.2003.11.085

Z. Y. Yang, Y. Hao, C. Rudowicz, Y. Y. Yeung, Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin-spin and spin-other-orbit interactions for Ni2+ (3d8 ) ions in trigonal crystal fields. J. Phys.: Condens. Matter 16 (2004) 3481, https://doi.org/10.1088/0953-8984/16/20/018

T. H. Yeom, Y. M. Chang, S. H. Choh, C. Rudowicz, Experimental and Theoretical Investigation of Spin-Hamiltonian Parameters for the Low Symmetry Fe3+ Centre in LiNbO3. Phys. Stat. Sol. b 185 (1994) 409, https://doi.org/10. 1002/pssb.2221850211

C. Rudowicz, Z. Y. Yang, Y. W. Lun, Crystal field analysis for 3d4 and 3d6 ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites, J. Phys. Chem. Solids 53 (1992) 1227, https://doi.org/10.1016/0022-3697(92)90043-D

C. K. Jorgensen, Modern Aspects of Ligand Field Theory; (North-Holland, Amsterdam, 1971), p.305

V. Parvathi, J. Sai Chandra, Y.Sunandamma, Growth, Characterization and NLO activity of Fe (III) doped Ni L-Histidine Hydrochloride Monohydrate Crystals, IOSR Journal of Engineering, 4 92014043-4050

D. J. Newman, B. Ng, The superposition model of crystal fields. Rep. Prog. Phys. 52 (1989) 699-763

D. J. Newman, B. Ng (Eds.), Crystal Field Handbook; (Cambridge University Press, Cambridge, 2000)

D. J. Newman, D. C. Pryce, W. A. Runciman, Superposition model analysis of the near infrared spectrum of Fe (super 2+) in pyrope-almandine garnets. Am. Miner. 63 (1978) 1278-1281

A. Edgar, Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts. J. Phys. C: Solid State Phys. 9 (1976) 4303, https://doi.org/10.1088/0022-3719/9/23/015

S. Pandey, R. Kripal, A. K. Yadav a, M. Ac¸ıkgooz, P. Gnutek, C. Rudowicz, Implications of direct conversions of crystal field parameters into zero-field splitting ones-Case study: Superposition model analysis for Cr3+ ions at orthorhombic sites in LiKSO4, J. Lumin. 230 (2021) 117548, https://doi. org/10.1016/j.jlumin.2020.117548

P. Gnutek, Z. Y Yang, C. Rudowicz, Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+ k -O2− I defect center in KTaO3 crystal. J. Phys.: Condens. Matter 21 (2009) 455402 (11pp). https://doi.org/10.1088/0953-8984/21/45/455402

Y. Y. Yeung, C. Rudowicz, Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites. J. Comput. Phys. 109 (1993) 150, https://doi.org/10.1006/jcph.1993.1206

Y. SugitaniI, K. Tagawa, K. Kato, Optical absorption spectra of iron (III) and chromium (III) doped in synthetic yttriumaluminium-garnets (YAG), Miner. J. 7 (1974) 445, https://doi.org/10.2465/minerj1953.7.445

Downloads

Published

2025-01-01

How to Cite

[1]
M. Bharati, V. Singh, and R. Kripal, “Local structure modeling of iron doped triglycine sulphate single crystals ”, Rev. Mex. Fís., vol. 71, no. 1 Jan-Feb, pp. 010501 1–, Jan. 2025.