Are neutrino oscillation mixings linked to the smallness of solar neutrino scale?
DOI:
https://doi.org/10.31349/RevMexFis.70.050801Keywords:
Neutrino mass matrix; reactorAbstract
Observed reactor and atmospheric neutrino oscillation mixing values appear to be related to the neutrino scale ratio p ∆m2 sol/∆2 ATM in a way that suggest that the neutrino mass matrix can be expanded as a power series by using this ratio as the smallness parameter. This approach provides a simple and natural way to expose the inner hierarchies among neutrino mass terms, which amounts to also explain the solar oscillation mixing as well as solar oscillation scale. We explore a class of mass matrix textures that realize this scenario, for both normal and inverted neutrino mass hierarchies, as well as CP violation and their stability under renormalization scaling.
References
M.C. Gonzalez-Garcia et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104
M.C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments, Universe 7 (2021) 459, https://doi.org/10.3390/universe7120459
L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369; Neutrino oscillations and stellar collapse, Phys. Rev. D 20 (1979) 2634, https://doi.org/10.1103/PhysRevD.20.2634
S.P. Mikheyev and A. Yu. Smirnov, Resonant neutrino oscillations in matter, Yad. Fiz. 42 (1985) 1441, https://doi. org/10.1016/0146-6410(89)90008-2
B. M. Pontecorvo, Mesonium and anti-mesonium, JETP Lett. 33 (1957) 549; B. M. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, JETP Lett. 34 (1957) 4
Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the Unified Model of Elementary Particles, Prog. Theor. Phys. 28 (1962) 870. https://doi.org/10.1143/PTP.28.870
I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhoue, The fate of hints: updated global analysis of three-flavor neutrino oscillations, J. High Energ. Phys. 2020 (2020) 178. https://doi.org/10.1007/JHEP09(2020)178
F. Vissani, A Statistical Approach to Leptonic Mixings and Neutrino Masses arXiv:hep-ph/0111373. https://doi.org/10.48550/arXiv.hep-ph/0111373
S. Pramanick and A. Raychaudhuri, Smallness of θ13 and the size of the solar mass splitting: Are they related?, Phys. Rev. D 88 (2013) 093009, https://doi.org/10.1103/PhysRevD.88.093009
H. Fritzsch and Z-Z. Xing, Lepton Mass Hierarchy and Neutrino Oscillations, Phys. Lett. B 372 (1996) 265, https://doi.org/10.1016/0370-2693(96)00107-4; Large leptonic flavour mixing and the mass spectrum of leptons, Phys. Lett. B 440 (1998) 313, https://doi.org/10.1016/S0370-2693(98)01106-X; H. Fritzsch and Z-Z. Xing, Lepton mass hierarchy and neutrino mixing, Phys. Lett. B 634 (2006) 514, https://doi.org/10.1016/j.physletb.2006.02.028. H. Fritzsch and Z-Z. Xing, Relating the neutrino mixing angles to a lepton mass hierarchy, Phys. Lett. B 682 (2009) 220. https://doi.org/10.1016/j.physletb.2009.11.018
A. Perez-Lorenzana, Small ´ θ13 and solar neutrino oscillation parameters from µ − τ symmetry, Int. J. of Mod. Phys. A 36 (2021) 2150225, https://doi.org/10.1142/S0217751X21502250
Z. Xing and Z. Zhao, A review of µ − τ flavor symmetry in neutrino physics, Rept. Prog. Phys. 79 (2016) 076201, https://doi.org/10.1088/0034-4885/79/7/076201
T. Takagi, On an algebraic problem related to an analytic theorem of Carathéodory and Fejér, Japan. J. Math. 1 (1925) 83, https://doi.org/10.4099/jjm1924.1.083
R.A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, (New York, NY 1985)
C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett. 55 (1985) 1039, https://doi.org/10.1103/PhysRevLett.55.1039
G.C. Branco et al., Minimal scenarios for leptogenesis and CP violation, Phys. Rev. D 67 (2003) 073025, https://doi.org/10.1103/PhysRevD.67.073025
P. H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312, https://doi.org/10.1016/0370-2693(93)90330-K
K. S. Babu, C. N. Leung and J. T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191, https://doi.org/10.1016/0370-2693(93)90801-N
S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238, https://doi.org/10.1016/S0370-2693(01)01127-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Eduardo Becerra-García, Abdel Pérez-Lorenzana
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.