Interaction of charged magnetic nanoparticles with surfaces
DOI:
https://doi.org/10.31349/RevMexFis.70.051004Keywords:
magnetic nanoparticles, Brownian dynamics, 2D-arrangementAbstract
The behavior of magnetic nanoparticles covering the surface with positive charges (MN), suspended in a continuous medium, was simulated by Brownian dynamics. Then, we studied the behavior of the MN in an aqueous-like suspension and their adsorption on a negatively charged surface, mimicking a mica surface. After several microseconds, particles are deposited onto the charged surface. Experimental results of ordered magnetic nanoparticles in surfaces are compared with the present simulation results of MN in two dimensions. We also demonstrate the effect of charged MN on the hexagonal structure when electrical repulsions dominate against magnetic dipole-dipole and van der Waals attractions. On one hand, the adsorption of MN on the surface depends on the electrostatic attraction force with the surface, while the surface organization of MN results from balancing electrostatic repulsion forces and magnetic attraction forces among particles. In magnetic nanoparticles simulated with a non-charged surface or weakly charged surface, dipole-dipole interactions dominate the particle-particle interactions, and the interactions between particles and a mica-like surface are conducted by van der Waals forces.
References
A. Arbab et al., Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications, Frontiers in Chemistry 13 (2021) Sec. Nanoscience 9- 629054, https://doi.org/10.3389/fchem.2021.629054
L. Zhiming, J. Ma, J. Ruan and X. Zhuang, Using Positively Charged Magnetic Nanoparticles to Capture Bacteria at Ultralow Concentration, Nanoscale Research Letters 14 (2019) 195, https://doi.org/10.1186/s11671-019-3005-z
T. Javanbakht, S. Laurent, D. Stanicki, W. Raphael, and J. R. Tavares, Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photoinitiated chemical vapour deposition, Journal of Nanoparticle Research 17 (2015) 462, https://doi.org/10.1007/s11051-015-3276-y
Y. Wang, P. Li and L. Kong, Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery, American Association of Pharmaceutical Scientists 14 (2013) 585, https://doi.org/10.1208/s12249-013-9943-3
S. Joly et al., Multilayer nanoreactors for metallic and semiconducting particles, Langmuir 16 (2000) 1354, https://pubs.acs.org/doi/10.1021/la991089t
P. Kulkarni and P. Biswas, A Brownian Dynamics Simulation to Predict Morphology of Nanoparticle Deposits in the Presence of Interparticle Interactions, Aerosol Science and Technology 38 (2004) 541, https://doi.org/10.1080/02786820490466747
G. Binasch, P. Grunberg, F. Saurenbach and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical Review B: Condensed Matter and Materials Physics 39 (1989) 4828, https://doi.org/10.1103/PhysRevB.39.4828
D. M. Eigler, A. J. Heinrich, S. Loth, and C. P. Lutz, Antiferromagnetic storage device, United States Patent (2014) No. US8,724,376 B2
D. K. Lee, Y.H. Kim, C. W. Kim, H. G. Cha, and Y. S. Kang, Vast Magnetic Monolayer Film with Surfactant-Stabilized Fe3O4 Nanoparticles Using Langmuir-Blodgett Technique, Journal of Physical Chemistry B 111 (2007) 9288, https://doi.org/10.1021/jp072612c
A. Fujimori, K. Ohmura, N. Honda, and K. Kakizaki, Creation of High-Density and Low-Defect Single-Layer Film of Magnetic Nanoparticles by the Method of Interfacial Molecular Films, Langmuir 31 (2015) 3254, https://doi.org/10.1021/acs.langmuir5b00241
M. Morga, Z. Adamczyk, D. Kosior and M. Oćwieja, Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization, Physical Chemistry Chemical Physics 20 (2018) 15368, https://doi.org/10.1039/C8CP01049H
M. Tadic, M. Panjan, V. Damnjanovic, and I. Milosevic, Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Applied Surface Science 320 (2014) 183, https://doi.org/10.1016/j. apsusc.2014.08.193
M. H. D. M. Rodrigues, J. B. Souza Junior, and E. R. Leite, The Influence of Magnetic Field and Nanoparticle Concentration on the Thin Film Colloidal Deposition Process of Magnetic Nanoparticles: The Search for High-Efficiency Hematite Photoanodes, Nanomaterials 12 (2022) 1636, https://doi.org/10.3390/nano12101636
M. Klokkenburg, C. Vonk, E. M. Claesson, J. D. Meeldijk, B. H. Ernè and A. P. Philipse, Direct Imaging of Zero-Field Dipolar Structures in Colloidal Dispersions of Synthetic Magnetite, Journal of the American Chemical Society 126 (2004) 16706, https://doi.org/10.1021/ja0456252
M.E. Cano et al., Magnetisation of red blood cells: a Brownian Dynamics Simulation, Rev. Mex. Fis. 58 (2012) 391–396
D. L. Ermak and J. A. McCammon, Brownian dynamics with hydrodynamic interactions, Journal of Chemical Physics 69 (1978) 1352, https://doi.org/10.1039/CS9851400421
W.-K. Qi, Z. Wang, Y. Han, Y. Chen, Melting in twodimensional Yukawa systems: A Brownian dynamics simulation, Journal of Chemical Physics 133 (2010) 234508, https://doi.org/10.1063/1.3506875
E. Bianchi, C. N. Likos, and G. Kahl, Self-assembly of heterogeneously charged particles under confinement, ACS Nano 7 (2013) 4657, https://doi.org/10.1021/nn401487m
C. Zannoni, Order parameters and orientational distributions in liquid crystals, en Polarized Spectroscopy of Ordered Systems, eds. B. Samorı y E. Thulstrup, Kluwer (1988), pp. 57-83, https://doi.org/10.1007/978-94-009-3039-1
P. M. Claesson, P. Herder, P. Stenius, J. C. Ericksson, and R. M. Pashley, An ESCA and AES study of ion-exchange on the basal plane of mica, Journal of Colloid and Interface Science 109 (1986) 31, https://doi.org/10.1016/0021-9797(86)90278-X
B. L. Dixon Northern, Y. L. Chen, J. N. Israelachvili, and J. A. N. Zasadzinski, Atomic force microscopy of mica surface after ion replacement, Proceedings of the 49th Annual Meeting of the Electron Microscopy Society of America 49 (1991) 628, https://doi.org/10.1038/s41467-023-35872-y
J. Ibarra et al., Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles, Mater. Res. Express 2 (2015) 095010, https://dx.doi.org/10.1088/2053-1591/2/9/095010
D. Liu, J. Wu, C. Kim and J. D. Fortner, Aqueous Aggregation and Surface Deposition Processes of Engineered Superparamagnetic Iron Oxide Nanoparticles for Environmental Applications, Environ. Sci. Technol. 48 (2014) 11892, https://doi.org/10.1021/es502174p
Yu et al., Surface Modification of Magnetic Iron Oxide Nanoparticles, Nanomaterials 8 (2018) 810, http://dx.doi.org/10.3390/nano8100810
S. A. Iakovenko et al., One- and Two-Dimensional Arrays of Magnetic Nanoparticles by the Langmuir-Blodgett Technique, Adv. Mater. 11 (1999) 388, https://doi.org/10.1002/(SICI)1521-4095(199903)11:5
E. Bellido, N. Domingo, I. O. Jimenez and D. Ruiz-Molina, Structuration and Integration of Magnetic Nanoparticles on Surfaces and Devices, small 8 (2012) 1465, https://doi.org/10.1002/smll.201101456
A. Ghazali and J. C. Levy, Two-dimensional arrangements of magnetic nanoparticles, Phys. Rev. B 67 (2003) 064409, https://doi.org/10.1103/PhysRevB.67.064409
J. J. Benkowski et al., Self-Assembly of Polymer-Coated Ferromagnetic Nanoparticles into Mesoscopic Polymer Chains, Journal of Polymer Science: Part B: Polymer Physics 46 (2008) 2267, https://doi.org/10.1002/polb.21558
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. A. Valdez, Josué Juárez , Jaime Ibarra, Miguel A. Valdez-Grijalva
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.