Preparation and characterization of potato starch/bentonite organophylized by SDS

Authors

  • N. Amrouni University Abou Beker Belkaid Tlemcen
  • A. Meziane University Abou Beker Belkaid Tlemcen
  • A. Boussaid University Abou Beker Belkaid Tlemcen

DOI:

https://doi.org/10.31349/RevMexFis.71.021001

Keywords:

Biofilms; starch; bentonit; SDS surfactant; compatibility

Abstract

This study focuses on the development of nanocomposite films using potato starch via a casting technique. Glycerol was incorporated as a plasticizer, while Sodium Dodecyl Sulfate (SDS)-modified bentonite acted as reinforcement. Various analytical methods, including Fourier transform infrared (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), UV/vis spectroscopy, Electron microscopy (SEM), and Optical microscopy (MOP), were utilized to assess the material properties. Different concentrations of SDS, below, at, and above the critical micelle concentration (CMC), were investigated. The findings suggest that films containing higher SDS levels demonstrate enhancements in both physical and chemical characteristics. XRD assessments reveal that films with SDS concentrations surpassing the CMC level display homogeneity, indicating effective intercalation or exfoliation processes. This compatibility of the biofilm components is further evidenced through FTIR, SEM, and MOP. Moreover, the introduction of SDS significantly improves the film’s biodegradability, as confirmed by thermogravimetric analysis.

References

E. Schwach, Etude de systèmes multi phases biodégradables a base d'amidon de blé plastifie relations structure – propriétés approche de la comptabilisation, These de doctorat, Université de Reims - Champagne Ardenne (2004)

A. Sandali, N. Rabhi, Comportement au choc des stratifies composites renforces par des fibres naturelles, Memoire de master, Universite Kasdi Marbah de Ouargla (2013)

P. Colonna, La chimie verte, (Lavoisier, Paris, 2005), ed. Tec & Doc. 4. A. Hebeish, A. A. Aly, A. El-Shafei, and S. Zaghloul, Synthesis and characterization of cationized starches for application in flocculation, finishing and sizing, Egyptian Journal of Chemistry, 52 (2009) 73, https://www.researchgate.net/publication/289228076

H. Ismail, M. Irani, and Z. Ahmad, Utilization of waste polystyrene and starch for superabsorbent composite preparation, Journal of Applied Polymer Science, 127 (2012) 4195, https://doi.org/10.1002/app.37952

H. Namazi and M. Mosadegh, Preparation and properties of starch/nanosilicate layer/polycaprolactone composites, Journal of Polymers and the Environment, 19 (2011) 980, https://doi.org/10.1007/s10924-011-0366-5

M. Marcin, Thermoplastic starch a green material for various industries, In L. P. B. M. Janssen and L. Moscicki (Eds.), TPS and its nature (Wiley-Interscience, New York, 2009), pp. 77- 104

W. Amnuay and T. Sampan, Sustainable green composites of thermoplastic starch and cellulose fibers, Songklanakarin Journal of Science and Technology, 36 (2014) 149

L. Qiu, F. Hu, and Y. Peng, Structural and mechanical characteristics of film using modified corn starch by the same two chemical processes used in different sequences, Carbohydrate Polymers, 91 (2013) 590, https://doi.org/10.1016/j.carbpol.2012.08.072

H. L. Boudjemah, Elaboration de materiaux composites biodegradables issus de ressources renouvelables, These de doctorat, Universite d’Oran 2, Institut de Maintenance et de Securite Industrielle (2016)

L. Y. El Hadji Babacar, Nouveaux materiaux composites thermoformables A base de fibres de cellulose, These de doctorat, Institut National Polytechnique de Grenoble (2008)

M. Mondragon, K. Arroyo, and J. Romero-Garcıa, Biocomposites of thermoplastic starch with surfactant, Carbohydrate Polymers, 74 (2008) 201, https://doi.org/10.1016/j.carbpol.2008.02.004

B. Chen and J. R. G. Evans, Thermoplastic starch-clay nanocomposites and their characteristics, Carbohydrate Polymers, 61 (2005) 455, https://doi.org/10.1016/j.carbpol.2005.06.020

A. Jimenez, M. J. Fabra, P. Talens, and A. Chiralt, Edible and biodegradable starch films: A review, Food and Bioprocess Technology, 5 (2012) 2058, https://doi.org/10. 1007/s11947-012-0835-4

Z. N. Ganga and H. Corke, Physical properties of starch of Asian-adapted potato varieties, Journal of the Science of Food and Agriculture, 79 (1999) 1642, https://doi.org/10.1002/(SICI)1097-0010(199909)79:12h1642::AID-JSFA412i3.0.CO;2-2

D. Demirgoz, C. Elvirs, J. F. Mano, A. M. Cunha, E. Piskin, and R. L. Reis, Chemical modification of starch-based biodegradable polymeric blends: Effects on water uptake, degradation behavior and mechanical properties, Polymer Degradation and Stability, 70 (2000) 161, https://doi.org/10.1016/S0141-3910(00)00102-6

M. Kim and S. J. Lee, Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films, Carbohydrate Polymers, 50 (2002) 331, https://doi.org/10.1016/S0144-8617(02)00057-7

M. I. Khalil and A. A. Aly, Evaluation of some starch derivatives containing amide groups as flocculants, Starch- Stark, 53 (2001) 323, https: //doi.org/10.1002/1521-379X(200107)53:7h323::AID-STAR323i3.0.CO;2-Z

F. A. Aouada, L. H. C. Mattoso, and E. Longo, New strategies in the preparation of exfoliated thermoplastic starchmontmorillonite nanocomposites, Industrial Crops and Products, 34 (2011) 1502, https://doi.org/10.1016/j.indcrop.2011.05.003

M. M. Hossain, M. I. H. Mondal, M. M. R. Khan, A. B. M. F. Al Am, and A. T. M. K. Hasan, Interactions between starch and surfactants by ternary phase diagram, Canadian Journal on Scientific and Industrial Research, 3 (2012) 246

J. A. Mbey and F. Thomas, Components interactions controlling starch-kaolinite composite films properties, Carbohydrate Polymers, 1170 (2015) 739, https://doi.org/10.1016/j.carbpol.2014.10.053

G. Zhuang et al., A new ball milling method to produce organomontmorillonite from anionic and nonionic surfactants, Applied Clay Science, 104 (2015) 18, https://doi.org/10.1016/j.clay.2014.11.023

X. Cao, J.Wang, M. Liu, Y. Chen, Y. Cao, and X. Yu, Chitosancollagen/ organomontmorillonite scaffold for bone tissue engineering, Frontiers in Materials Science, 9 (2015) 405, https://doi.org/10.1007/s11706-015-0317-5

Y. Gao et al., Effects of organic modification of montmorillonite on the performance of starch-based nanocomposite films, Applied Clay Science, 99 (2014) 201, https://doi.org/10.1016/j.clay.2014.06.033

S. Mohanty and S. K. Nayak, Effect of clay exfoliation and organic modification on morphological, dynamic mechanical, and thermal behavior of melt-compounded polyamide-6 nanocomposites, Polymer Composites, 28 (2007) 153, https://doi.org/10.1002/pc.20284

F. Chivrac, E. Pollet, M. Schmutz, and L. Averous, New ´ approach to elaborate exfoliated starch-based nanobiocomposites, Biomacromolecules, 9 (2008) 896, https://doi.org/10.1021/bm7012668

S. Pavlidou and C. D. Papaspyrides, A review on polymerlayered silicate nanocomposites, Progress in Polymer Science, 33 (2008) 1119, https://doi.org/10.1016/j.progpolymsci.2008.07.008

Y. Xi, R. L. Frost, and H. He, Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides, Journal of Colloid and Interface Science, 305 (2007) 150, https://doi.org/10.1016/j.jcis.2006.09.033

A. Pozsgay et al., Gallery structure and exfoliation of organophilized montmorillonite: Effect on composite properties, European Polymer Journal, 40 (2004) 27, https://doi.org/10.1016/j.eurpolymj.2003.09.010

A. Vazquez, M. Lopez, G. Kortaberria, L. Martın, and I. Mondragon, Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination, Applied Clay Science, 41 (2008) 24, https://doi.org/10.1016/j.clay.2007.10.001

Z. B. Xu, W. W. Kong, M. X. Zhou, and M. Peng, Effect of surface modification of montmorillonite on the properties of rigid polyurethane foam composites, Chinese Journal of Polymer Science, 28 (2010) 615, https://doi.org/10.1007/s10118-010-9111-0

Y. D. Wang, S. Zhang, C. L. Ma, and H. D. Li, Synthesis and room temperature photoluminescence of ZnO/CTAB ordered layered nanocomposite with flake-like architecture, Journal of Luminescence, 126 (2007) 661, https://doi.org/10.1016/j.jlumin.2006.10.018

M. Babaee, M. Jonoobi, Y. Hamzeh, and A. Ashori, Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers, Carbohydrate Polymers, 132 (2015) 1, https://doi.org/10.1016/j.carbpol.2015.06.043

R. Bodirlau, C. A. Teaca, and I. Spiridon, Influence of natural fillers on the properties of starch-based biocomposite films, Composites Part B: Engineering, 44 (2013) 575, https://doi.org/10.1016/j.compositesb.2012.02.039

S. C. Lara and F. Salcedo, Gelatinization and retrogradation phenomena in starch/montmorillonite nanocomposites plasticized with different glycerol/water ratios, Carbohydrate Polymers, 151 (2016) 206, https://doi.org/10.1016/j.carbpol.2016.05.065

V. Vamadevan, E. Bertoft, Structure-function relationships of starch components, Starch-Starke, 67 (2014) 55, https://doi.org/10.1002/star.201400188

F. M. Pelissari, M. M. Andrade Mahecha, P. Jose, A. Sobral, and F. C. Menegalli, Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels, Journal of Colloid and Interface Science, 505 (2017) 154, https://doi.org/10.1016/j.jcis.2017.05.106

M. I. H. Mondal, M. M. Hossain, and M. R. Sharif, Study of starch-based biodegradable polymeric surfactants for better cleansing activity, International Research Journal of Pure and Applied Chemistry, 4 (2014) 805, http://dx.doi.org/10.9734/irjpac/2014/10562

J. A. Mbey, S. Hoppe, and F. Thomas, Cassava starchkaolinite composite film: Effect of clay content and clay modification on film properties, Carbohydrate Polymers, 88 (2012) 213, https://doi.org/10.1016/j.carbpol.2011.11.091

Downloads

Published

2025-03-01

How to Cite

[1]
N. Amrouni, A. Meziane, and A. Boussaid, “Preparation and characterization of potato starch/bentonite organophylized by SDS”, Rev. Mex. Fís., vol. 71, no. 2 Mar-Apr, pp. 021001 1–, Mar. 2025.