Ab initio insight into the physical properties of new ferroelectric perovskite oxide materials XGeO3 (X = Sr, Ca)

Authors

  • A. Waqdim Sultan Moulay Slimane University
  • M. Agouri Sultan Moulay Slimane University
  • M. Ouali Sultan Moulay Slimane University
  • A. Abbassi Sultan Moulay Slimane University
  • S. Taj Sultan Moulay Slimane University
  • B. Manaut Sultan Moulay Slimane University
  • M. El Idrissi Sultan Moulay Slimane University

DOI:

https://doi.org/10.31349/RevMexFis.70.051603

Keywords:

DFT; perovskite oxides; Wien2K; ferroelectric; nmBJ

Abstract

The investigation of structural stability, electronic, mechanical, spontanous polarization, and thermodynamic properties of simple cubic perovskite oxides XGeO3 (X =Sr, Ca) has been performed through density functional theory as introduced in Wien2K code. The tolerence factor, Born criteria, and phonon dispersion confirm the stability and the formation of both materials in the ideal cubic structure. Additionally, the application of nmBJ approach in electronic properties shows an exceptional semiconducting aspect. The strain effect on spontaneous polarization of XGeO3 (X =Sr, Ca) perovskites presents an excellent ferroelectric behavior. The thermodynamic parameters such as volume, bulk modulus, thermal expansion coefficient, Debye temperature, Gibbs free energy, enthalpy, heat capacities, and Gruneisen, have been ¨ calculated and discussed with a wide range of pressures (0−20 GPa) and temperatures (0−1000 K). Based on the exceptional semiconducting nature and significant spontaneous polarization, the studied materials can be considered as ferroelectric materials, which make them as a suitable candidates in ferroelctric devices.

References

A. E. Katz, Perovskite: Name Puzzle and German-Russian Odyssey of Discovery, Helvetica Chimica Acta 103 (2020) e2000061, https://doi.org/10.1002/hlca.202000061

A. Abbassi et al., Magneto-Thermal, Mechanical, and Optoelectronic Properties of Sr2MWO6 (M = V , Rh, Ru): Ab Initio Study, J. Supercond. Nov. Magn. 36 (2023) 995-1001, https://doi.org/10.1007/s10948-023-06537-0

M. Agouri et al., Insight into the effect of rare earth RE = Ce, Nd, Gd elements on the physical properties of Pb-Based Perovskite Oxides (PbREO3), Mater. Sci. Eng. B. 294 (2023) 116550, https://doi.org/10.1016/j.mseb.2023.116550

A. Waqdim et al., Theoretical investigation of the physical properties of cubic perovskite oxides SrXO3 (X = Sc, Ge, Si), Mater. Sci. Semicond. 158 (2023) 107340, https://doi.org/10.1016/j.mssp.2023.107340

A. Zaghrane et al., First-principles investigation of structural, electronic, optical, and magnetic properties of a scintillating double perovskite halides (Cs2LiCeX6) with (X = F, Br, and I), Chin. J. Phys. (2023). https://doi.org/10.1016/j.cjph.2023.08.001

R. E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature. 358 (1992) 136, https://doi.org/10.1038/358136a0

P. G. Silvestrov, et al., Polarized electric current in semiclassical transport with spin-orbit interaction, Phys. Rev. B. 74 (2006) 165301, https://doi.org/10.1103/PhysRevB.74.165301

R. Sharif et al., A comprehensive review of the current progresses and material advances in perovskite solar cells, Nanoscale Adv. 5 (2023) 3803, https://doi.org/10.1039/D3NA00319A

C. S. Hwang et al., Advances in Non-Volatile Memory and Storage Technology, (Woodhead Publishing Series in Electronic and Optical Materials, 2019), p.p. 393-441, https://doi.org/10.1016B978-0-08-102584-0.00012-7

I. Grinberg, et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials, Nature 503 (2013) 509-512, https://doi.org/10.1038/nature12622

X. Luo et al., Electron transport enhancement of perovskite solar cell due to spontaneous polarization of Li+ -doped BaTiO3, Solid State Sci. 108 (2020) 106387, https://doi.org/10.1016/j.solidstatesciences.2020.106387

H.S. Bhatti, et al., Synthesis and induced multiferroicity of perovskite PbTiO3; a review, Appl. Surf. Sci. 367 (2016) 291, https://doi.org/10.1016/j.apsusc.2016.01.164

Z. Pan, et al., Large spontaneous polarization in polar perovskites of PbTiO3-Bi(Zn1/2Ti1/2)O3, Inorg. Chem. Front. 5 (2018) 1277, https://doi.org/10.1039/C8QI00184G

C. He, et al., Inorganic photovoltaic cells based on BiFeO3: spontaneous polarization, lattice matching, light polarization and their relationship with photovoltaic performance, Phys. Chem. Chem. Phys. 22 (2020) 8658, https://doi.org/10.1039/D0CP01176B

X.K. Wei, et al., Polarity of translation boundaries in antiferroelectric PbZrO3, Mater. Res. Bull. 62 (2015) 101-105, https://doi.org/10.1016/j.materresbull.2014.11.024

A. Savage, Pyroelectricity and Spontaneous Polarization in LiNbO3, J. Appl. Phys. 37, (1966) 3071-3072, https://doi.org/10.1063/1.1703164

Y. Zhang et al., Strain tunable ferroelectric and dielectric properties of BaZrO3, J. Appl. Phys. 115 (2014) 224107, https://doi.org/10.1063/1.4883298

L. G. Ferreira et al., Ferrielectric Twin Walls in CaTiO3, PRL 101 (2008) 097602, https://doi.org/10.1103/PhysRevLett.101.097602

A. Abbassi et al., Spontaneous Polarization and Magnetic Investigation Of BiXO3 (X=Co, Mn, Fe, V, Zn): First-Principle Study, J. Supercond. Nov. Magn. 29 (2015) 487, https://doi.org/10.1007/s10948-015-3315-z

C. Azahaf et al., Theoretical investigation of spontaneous polarization, electronic and optical properties of cubic perovskite BaHfO3, Opt Quant Electron. 47 (2015) 2889, https://doi.org/10.1007/s11082-015-0178-2

R. Chiara et al, Germanium-Based Halide Perovskites: Materials, Properties, and Applications, ChemPlusChem. 86 (2021) 879, https://doi.org/10.1002/cplu.202100191

K. Ding, et al., Superior ferroelectricity and nonlinear optical response in a hybrid germanium iodide hexagonal perovskite, Nat. Commun. 14, (2023) 2863, https://doi.org/10.1038/s41467-023-38590-7

S. Bouhmaid et al., A DFT study of electronic, optical and thermoelectric properties of Ge-halide perovskites CsGeX3 (X=F, Cl and Br), Comput. Condens. Matter. 31 (2022) e00663 https://doi.org/10.1016/j.cocom.2022.e00663

A. Dey et al., Cubic PbGeO3 perovskite oxide: A compound with striking electronic, thermoelectric and optical properties, explored using DFT studies, Comput. Condens. Matter. 26 (2021) e00532, https://doi.org/10.1016/j.cocom.2020.e00532

W. Xiao et al., A new cubic perovskite in PbGeO3 at high pressures, Am. Min. 97 (2012) 1193, https://doi.org/10.2138/am.2012.4021

N. A. Noor et al., Physical properties of cubic BaGeO3 perovskite at various pressure using first-principle calculations for energy renewable devices, J. Mol. Graph. Model. 84 (2018) 152, https://doi.org/10.1016/j.jmgm.2018.06.020

A. Nakatsuka et al., Crystal structure of SrGeO3 in the highpressure perovskite-type phase, Acta Cryst. 71 (2015) 502, https://doi.org/10.1107/S2056989015007264

J. Cheng et al., Design of two-dimensional electron gas systems via polarization discontinuity from large-scale first-principles calculations, J. Mater. Chem. C 6 (2018) 6680-6690, https://doi.org/10.1039/C8TC01893F

Y. Wang et al., High-mobility two-dimensional electron gas in SrGeO3- and BaSnO3-based perovskite oxide heterostructures: an ab initio study, Chem. Chem. Phys. 18 (2016) 31924-31929, https://doi.org/10.1039/C6CP05572A

Q. Q. Ye et al., A SrGeO3 inorganic electron-transporting layer for highperformance perovskite solar cells, Mater. Chem. A 7 (2019) 14559, https://doi.org/10.1039/C9TA03176F

A. Nakatsuka et al., A SrGeO3 inorganic electron-transporting layer for high-performance perovskite solar cell, Journal of mineralogical and petrological sciences 113, (2018) 280-285, https://doi.org/10.2465/jmps.180605

R. B. Behram et al., Ab-initio investigation of AGeO3 (A = Ca, Sr) compounds via Tran-Blaha-modified Becke-Johnson exchange potential Chin. Phys. B 26 (2017) 116103, https://doi.org/10.1088/1674-1056/26/11/116103

R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, 1990), https://doi.org/10.1007/978-3-642-86105-5

R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules, (Oxford University Press, 1994). https://doi.org/10.1007/978-3-319-14045-2_37

P. Blaha et al., Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun. 59 (1990) 399, https://doi.org/10.1016/0010-4655(90)90187-6

J. P. Perdew, et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 102, (2009) 039902, https://doi.org/10.1103/PhysRevLett.100.136406

F. Tran, et al., Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102, (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401

D. Koller, et al., Improving the modified Becke-Johnson exchange potential, Phys. Rev.B. 85, (2012) 155109, https://doi.org/10.1103/PhysRevB.85.155109

H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B. 13 (1976) 5188, https://doi.org/10.1103/PhysRevB.13.5188

F. Birch, The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain, J. Appl. Phys. 9 (1938) 279, https://doi.org/10.1063/1.1710417

A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015) 1-5, https://dx.doi.org/10.1016/j.scriptamat.2015.07.021

R. Golesorkhtabar et al., ElaStic: A tool for calculating secondorder elastic constants from first principles, Computer Physics Communications. 184 (2013) 1861, https://doi.org/10.1016/j.cpc.2013.03.010

S. J. Ahmed et al., BerryPI: A software for studying polarization of crystalline solids with WIEN2k density functional all-electron package, Computer Physics Communications. 184 (2013) 647-651, https://doi.org/10.1016/j.cpc.2012.10.028

S. A. Dar, V. Srivastava, U. K. Sakalle, Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite, J. Electron. Mater. 46 (2017) 6870, https://doi.org/10.1007/s11664-017-5731-2

M. A. Blanco et al., J. Mol. Struct. Theochem. 268 (1996), https://doi.org/10.1016/j.mseb.2018.12.007

M. A. Blanco et al., E. Francisco and V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Phys. Commun. 57 (2004) 158, https://doi.org/10.1016/j.comphy.2003.12.001

K. Momma and F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44 (2011) 1272, https://doi.org/10.1107/S0021889811038970

F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, PNAS 30 (1994) 244, https://doi.org/10.1073/pnas.30.9.244

C. A. Niedermeier et al., covering condensed matter and materials physics Phonon scattering limited mobility in the representative cubic perovskite semiconductors SrGeO3, BaSnO3, and SrTiO3, Phy. Rev. B. 101 (2020) 125206, https://doi.org/10.1103/PhysRevB.101.125206

C. H. Kronbo et al., High pressure structure studies of three SrGeO3 polymorphs - Amorphization under pressure, Journal of alloys and compounds 885 (2021) 157419, https://doi.org/10.1016/j.jallcom.2020.157419

R. B. Behram et al., Chin. Phys. B 26 (2017) 116103, https://doi.org/10.1088/1674-1056/26/11/116103

V. M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 14 (1926) 477, https://doi.org/10.1007/BF01507527

Z. Li et al, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chem. Mater. 28 (2016) 284- 292, https://doi.org/10.1021/acs.chemmater.5b04107

P. Kumari et al., DFT calculations of opto-electronic, mechanical, thermodynamic, and transport properties of XCeO3 (X = Mg, Ca, and Ba) perovskite, J. Chem. Thermodynamics 18 (2023) 107071, https://doi.org/10.1016/j.jct.2023.107071

P. Kumari et al Exploration of optoelectronic, thermodynamic, and thermoelectric properties of RFeO3 (R = Pr, Nd) perovskites, Materials Science and Engineering B. 299 (2024) 117044, https://doi.org/10.1016/j.mseb.2023.117044

A. Nakatsuka, et al., Temperature dependence of crystal structure of CaGeO3 high-pressure perovskite phase and experimental determination of its Debye temperatures studied by lowand hightemperature single-crystal X-ray diffraction, American Mineralogist 100 (2015) 1190-1202, https://doi.org/10.2138/am-2015-4945

M. Born, On the stability of crystal lattices, I. Mathematical Proceedings of the Cambridge Philosophical Society, 36 (1940) 160, https://doi.org/10.1017/S0305004100017138

F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90 (2014) 224104, https://doi.org/10.1103/PhysRevB.90.224104

A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitatsbedingung für Einkristalle, Journal of Applied Mathematics and Mechanics (1929), https://doi.org/10.1002/zamm.19290090104

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65, (1952) 349, https://doi.org/10.1088/0370-1298/65/5/307

W. Voigt, Lehrbuch der Kristallphysik, (Taubner, Leipzig, 1928), https://doi.org/10.1007/978-3-663-15884-4

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823, https://doi.org/10.1080/14786440808520496

I. N. Frantsevich, F. F. Voronov, and S. A. Bokuta, Elastic constants and elastic moduli of metals and insulators, (Kiev, Naukova dumka, 1982)

C. M. Kube, Elastic anisotropy of crystals, AIP Advances. 6 (2016) 095209, https://doi.org/10.1063/1.4962996

J. M. Henriques et al., Ab initio structural, electronic and optical properties of orthorhombic CaGeO3, Journal of Solid State Chemistry 180 (2007) 974, https://doi.org/10.1016/j.jssc.2006.12.029

Said Amounas et al., Dependence of tetragonal barium titanate spontaneous polarization and refractive indices on DFT exchange-correlation functionals, Physica B: Condensed Matter. 674 (2024) 415536, https://doi.org/10.1016/j.physb.2023.415536

C. Azahaf et al. Theoretical investigation of spontaneous polarization, electronic and optical properties of cubic perovskite BaHfO3, Opt Quant Electron. 47 (2015) 2889, https://doi.org/10.1007/s11082-015-0178-2

S. Amounas et al., DFT investigation of lattice parameters, spontaneous polarization, and refractive indices of tetragonal BaTiO3 and PbTiO3, Physica B: Condensed Matter. 663 (2023) 415002, https://doi.org/10.1016/j.physb.2023.415002

O. Sahnoun et al., Ab initio study of structural, electronic and thermodynamic properties of tungstate double perovskites Ba2MWO6 (M = Mg, Ni, Zn), Comput. Mater. Sci. 77 (2013) 316, https://doi.org/10.1016/j.commatsci.2013.04.053

S. A. DAR et al., Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide, J. Electron. Mater. 47 (2018) 3809, https://doi.org/10.1007/s11664-018-6251-4

A. T. Petit and P. L. Dulong, Recherches sur Quelques Points Importants de la Thèorie de la Chaleur, Annales de Chimie et de Physique. 10 (1819) 395

J. Garai, Correlation between thermal expansion and heat capacity, Calphad 30 (2006) 354-356, https://doi.org/10.1016/j.calphad.2005.12.003

Z. Guo et al., Effects of pressure and temperature on thermodynamic properties of WB3 by first-principles predictions, Mat. Res. Express 6 (2019) 115034, https://doi.org/10.1088/2053-1591/ab45b1

L. Burakovsky and D. L. Preston, Analytic model of the Grüneisen parameter all densities, J. Phys. Chem. Solids 65 (2004) 1581-1587, https://doi.org/10.1016/j. jpcs.2003.10.076

Downloads

Published

2024-09-01

How to Cite

[1]
A. Waqdim, “Ab initio insight into the physical properties of new ferroelectric perovskite oxide materials XGeO3 (X = Sr, Ca)”, Rev. Mex. Fís., vol. 70, no. 5 Sep-Oct, pp. 051603 1–, Sep. 2024.