Scaling the fluctuation of the flow capacity of core logs in a formation in southeastern Mexico

Authors

DOI:

https://doi.org/10.31349/RevMexFis.71.030602

Keywords:

Flow capacity, structure function, fluctuation, collpase

Abstract

This study evaluates flow capacity fluctuations in well cores from a southeastern Mexico formation using pdpk records. Petrophysical measurements provide wellbore wall flow capacity data, used to identify trends. Applying a dynamic scaling approach akin to the Family-Vicsek method, we analyze discrete kh* records. In particular, the order parameter structure function q was applied to the flow capacity records, and the exponents characterizing dynamic scaling α, β, z were identified, revealing self-affine scalings for fluctuations. Data collapse of flow capacities occurs in the northern zone with higher fractures and oil production, contrasting with the poorly collapsed flow capacity in the southern zone. This suggests superior flow capacity in fractal reservoir media compared to Euclidean counterparts.

References

C. Wang, et al., Dependence of connectivity dominance on fracture permeability and influence of topological centrality on the flow capacity of fractured porous media, Journal of Hydrology 624 (2023) 129883, https://doi.org/10.1016/J.JHYDROL.2023.129883

B. Ghanbarian, et al., Tortuosity in Porous Media: A Critical Review, Soil Science Society of America Journal 77 (2013) 1461, https://doi.org/10.2136/SSSAJ2012.0435

Y. Jin, et al., Scaling Invariant Effects on the Permeability of Fractal Porous Media, Transport in Porous Media 109 (2015) 433, https://doi.org/10.1007/S11242-015-0527-4/METRICS

S. W. Coleman and J. C. Vassilicos, Transport properties of saturated and unsaturated porous fractal materials, Physical Review Letters 100 (2008) 035504, https://doi.org/10.1103/PHYSREVLETT.100.035504/FIGURES/4/MEDIUM

J. Qiao, et al., Insights into the pore structure and implications for fluid flow capacity of tight gas sandstone: A case study in the upper paleozoic of the Ordos Basin, MarPG 118 (2020) 104439, https://doi.org/10.1016/J.MARPETGEO.2020.104439

B. B. Beall, R. Tjon-Joe-Pin, and H. D. Brannon, Progressive Technology Increases Flow Capacity in Horizontal Wells, Proceedings - SPE Eastern Regional Conference and Exhibition (1997) 161, https://doi.org/10.2118/39230-MS

N. Bona, et al., Integrated Core Analysis for Fractured Reservoirs: Quantification of the Storage and Flow Capacity of Matrix, Vugs, and Fractures, SPE Reservoir Evaluation & Engineering 6 (2003) 226, https://doi.org/10.2118/85636-PA

J. A. Klotz, R. F. Krueger, and D. S. Pye, Effect of Perforation Damage on Well Productivity, Journal of Petroleum Technology 26 (1974) 1303, https://doi.org/10.2118/4654-PA

M. N. Acharya, et al., Flow Path Characterization: A Deterministic Approach for Reconciliation of Flow Capacity Changes from Matrix and Fractures Productivity in Deep Jurassic Reservoirs in North Kuwait, Proceedings - SPE Annual Technical Conference and Exhibition 4 (2013) 3181, https://doi.org/10.2118/166347-MS

M. N. Acharya, et al., Flow Capacity Evaluation in a Complex Carbonate Reservoir: Key to Understand Reservoir Productivity and Stimulation Effectiveness, Proceedings - SPE Annual Technical Conference and Exhibition 1 (2012) 267, https://doi.org/10.2118/156101-MS

J. A. Barker, A generalized radial flow model for hydraulic tests in fractured rock, Water Resources Research 24 (1988) 1796, https://doi.org/10.1029/WR024I010P01796

P. Balossino, et al., A New Integrated Approach to Obtain Reliable Permeability Profiles From Logs in a Carbonate Reservoir, SPE Russian Oil and Gas Technical Conference and Exhibition 2006 1 (2006) 453, https://doi.org/10.2118/102289-MS

J. Chang and Y. C. Yortsos, Pressure-Transient Analysis of Fractal Reservoirs, SPE Formation Evaluation 5 (1990) 31,https://doi.org/10.2118/18170-PA

A. S. Balankin and B. E. Elizarraraz, Map of fluid flow in fractal porous medium into fractal continuum flow, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 85 (2012) 056314, https://doi.org/10.1103/PHYSREVE.85.056314/FIGURES/7/MEDIUM

A. S. Balankin, et al., Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity, Physics Letters A 380 (2016) 2767, https://doi.org/10.1016/J.PHYSLETA.2016.06.032

E. Ley-Koo, Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings, Rev. Mex. Fís. 64 (2018) 326, https://doi.org/10.31349/RevMexFis.64.326

D. J. Griffiths, Introduction to electrodynamics, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1989), pp. 331–334.

J. Warren and P. Root, The Behavior of Naturally Fractured Reservoirs, Society of Petroleum Engineers Journal 3 (1963) 245, https://doi.org/10.2118/426-PA

D. Abadassah and I. Ershaghi, Triple-Porosity Systems for Representing Naturally Fractured Reservoirs, SPE Formation Evaluation 1 (1986) 113, https://doi.org/10.2118/13409-PA

H. W. Park, J. Choe, and J. M. Kang, Pressure Behavior of Transport in Fractal Porous Media Using a Fractional Calculus Approach, Energy Sources 22 (2000) 881, https://doi.org/10.1080/00908310051128237

J. A. Acuna, I. Ershaghi, and Y. C. Yortsos, Practical Application of Fractal Pressure-Transient Analysis in Naturally Fractured Reservoirs, SPE Formation Evaluation 10 (1995) 173, https://doi.org/10.2118/24705-PA

F. Flamenco-López and R. Camacho-Velázquez, Determination of Fractal Parameters of Fracture Networks Using Pressure-Transient Data, SPE Reservoir Evaluation & Engineering 6 (2003) 39, https://doi.org/10.2118/82607-PA

L. Fanhua and L. Ciqun, Pressure-transient analysis of two-layers fractal reservoirs, Applied Mathematics and Mechanics (English Edition) 19 (1998) 21, https://doi.org/10.1007/BF02458977/METRICS

K. Razminia, A. Razminia, and D. F. Torres, Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure, Applied Mathematics and Computation 257 (2015) 374, https://doi.org/10.1016/J.AMC.2014.12.124

B. O’Shaughnessy and I. Procaccia, Analytical Solutions for Diffusion on Fractal Objects, Physical Review Letters 54 (1985) 455, https://doi.org/10.1103/PhysRevLett.54.455

B. Sinanan, Integrated Petrophysical Approach Fast-tracks Development and Results From a Heavy-Oil Reservoir in Trinidad (2005), https://doi.org/10.2118/94490-MS

C. C. Barton and P. R. Pointe, Fractals in Petroleum Geology and Earth Processes (1995), https://doi.org/10.1007/978-1-4615-1815-0

F. Jestczemski and M. Sernetz, Multifractal approach to inhomogeneous fractals, Physica A: Statistical Mechanics and its Applications 223 (1996) 275, https://doi.org/10.1016/0378-4371(95) 00365-7

A. Bunde and S. Havin, Fractals in Science (Springer Berlin Heidelberg, 1994), 10.1007/978-3-642-77953-4, URL http://link.springer.com/10.1007/978-3-642-77953-4.

H. H. Hardy and R. A. Beier, Fractals in Reservoir Engineering, Fractals in Reservoir Engineering (1994), https://doi.org/10.1142/2574

C. C. Barton and P. R. Pointe, Fractals in the Earth Sciences (Springer US, 1995), 10.1007/978-1-4899-1397-5, URL http://link.springer.com/10.1007/978-1-4899-1397-5.

V. S. Rios, L. O. Santos, and D. J. Schiozer, Upscaling Technique for Highly Heterogeneous Reservoirs Based on Flow and Storage Capacity and the Lorenz Coefficient, SPE Journal 25 (2020) 1981, https://doi.org/10.2118/200484-PA

J. E. Roberts, et al., Well Test Analysis of Naturally Fractured Vuggy Reservoirs with an Analytical Triple Porosity – Double Permeability Model and a Global Optimization Method, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 69 (2014) 653, https://doi.org/10.2516/OGST/2013182

M. Lozada-Zumaeta, et al., Distribution of petrophysical properties for sandy-clayey reservoirs by fractal interpolation, Nonlinear Processes in Geophysics 19 (2012) 239, https://doi.org/10.5194/NPG-19-239-2012

A. K. Verma, et al., Modeling of reservoir property using fractal interpolation and geostatistics, SEG Technical Program Expanded Abstracts 33 (2014) 2460, https://doi.org/10.1190/SEGAM2014-1567.1

T. Babadagli, Effective permeability estimation for 2-D fractal permeability fields, Mathematical Geology 38 (2006) 33, https://doi.org/10.1007/S11004-005-9002-Z/METRICS

F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, Journal of Physics A: Mathematical and General18 (1985) L75, https://doi.org/10.1088/0305-4470/18/2/005

A. S. Balankin, et al., Scaling dynamics of seismic activity fluctuations, Europhysics Letters 85 (2009) 39001, https://doi.org/10.1209/0295-5075/85/39001

Y. Ezaier, et al., Morphological properties of the interfaces growth of composite membranes, Materials Today: Proceedings 66 (2022) 238, https://doi.org/10.1016/J.MATPR.2022.03.729

K. Fujimoto, R. Hamazaki, and Y. Kawaguchi, Family-Vicsek Scaling of Roughness Growth in a Strongly Interacting Bose Gas, Physical Review Letters 124 (2020) 210604, https://doi.org/10.1103/PHYSREVLETT.124.210604/FIGURES/5/MEDIUM

S.-A. Ouadfeul and L. Aliouane, Multifractal Analysis Revisited by the Continuous Wavelet Transform Applied in Lithofacies Segmentation from Well-Logs Data, International Journal of Applied Physics and Mathematics (2011) 10, https://doi.org/10.7763/IJAPM.2011.V1.3

F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, Journal of Physics A: Mathematical and General 18 (1985) L75, https://doi.org/10.1088/0305-4470/18/2/005

P. Meakin, Fractals, scaling, and growth far from equilibrium (1998) 674

E. Hernandez-Martinez, et al., Electro-facies Recognition from Well-Log Data . An R / S Scaling Analysis Approach, Submitted Mathematical Geosciences (2012)

R. Rahimi, M. Bagheri, and M. Masihi, Characterization and estimation of reservoir properties in a carbonate reservoir in Southern Iran by fractal methods, Journal of Petroleum Exploration and Production Technology 8 (2018) 31, https://doi.org/10.1007/S13202-017-0358-7/TABLES/10

D. Subhakar and E. Chandrasekhar, Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data, Physica A: Statistical Mechanics and its Applications 445 (2016) 57, https://doi.org/10.1016/J.PHYSA.2015.10.103

H. R. ELYAS, et al., Self-similar segmentation and multifractality of post-stack seismic data, Petroleum Exploration and Development 47 (2020) 781, https://doi.org/10.1016/S1876-3804(20) 60093-3

H.-O. Peitgen, H. Jürgens, and D. Saupe, Fractals, Chaos and Fractals (1992), 978-1-4757-4740-9

H. A. Makse, et al., Pattern formation in sedimentary rocks: Connectivity, permeability, and spatial correlations, Physica A: Statistical Mechanics and its Applications 233 (1996) 587, https://doi.org/10.1016/S0378-4371(96)00246-4

A. S. Balankin, et al., Comparative study of gravity-driven discharge from reservoirs with translationally invariant and fractal pore networks, Journal of Hydrology 565 (2018) 467, https://doi.org/10.1016/J.JHYDROL.2018.08.052

A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth, Fractal Concepts in Surface Growth (1995), https://doi.org/10.1017/CBO9780511599798

Downloads

Published

2025-05-01

How to Cite

[1]
S. . Matias Gutierres, E. I. Garcia, H. D. . Sánchez Chávez, and R. . Cifuentes Villafuerte, “Scaling the fluctuation of the flow capacity of core logs in a formation in southeastern Mexico”, Rev. Mex. Fís., vol. 71, no. 3 May-Jun, pp. 030602 1–, May 2025.