Paramagnetism found in Mn-doped CuO nanofibers at room temperature explained by XPS , XAS and Rietveld method
DOI:
https://doi.org/10.31349/RevMexFis.70.051002Keywords:
Nanofibers, CuO nanofibers, XAS, XPS, electron density, Mn-dopedAbstract
CuO and 3 % Mn-doped CuO nanofibers were synthesized employing the electrospinning method. X-ray diffraction (XRD) verified a monoclinic phase with a C 2/c space group. An electronic density analysis, obtained using Fullprof software, was projected on the (110) and (001) planes for both materials, showing modifications in the Cu positions. This fact generated vacancies involved in the paramagnetism formation in the Mn-doped CuO nanofibers, in contrast to the mixed magnetic phase composed by both ferromagnetic and paramagnetic behaviors found in the undoped CuO. The vacancy amount was quantified by X-ray absorption spectroscopy (XAS) applying CASTEP software. In addition, an analysis from Cu 2p XPS peaks supports the predicted Cu-Cu rearrangement by the Fullprof software study, while the presence of Cu1+ confirms the substitution of Mn for Cu in the doped sample.
References
M. B. K. et al, Binary copper oxide semiconductors: From materials towards devices, Phys. status solidi, 249 (2012) 1487, https://doi.org/10.1002/pssb.201248128
N. M. Basith, J. J. Vijaya, L. J. Kennedy, and M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method, Mater. Sci. Semicond. Process. 17 (2014) 110, https://doi.org/10.1016/J.MSSP.2013.09.013
A. Rahnama and M. Gharagozlou, Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures, Opt. Quantum Electron. 44 (2012) 313, https://doi.org/10.1007/s11082-011-9540-1
R. A. Borzi, S. J. Stewart, R. C. Mercader, G. Punte, and F. Garcia, Magnetic behavior of nanosized cupric oxide, J. Magn. Magn. Mater., 226-230 (2001) 1513, https://doi.org/10.1016/S0304-8853(00)00943-4
G. N. Rao, Y. D. Yao, and J. W. Chen, Superparamagnetic behavior of antiferromagnetic CuO nanoparticles, IEEE Trans. Magn., 41 (2005) 3409, https://doi.org/10.1109/TMAG.2005.855214
G. Narsinga Rao, Y. D. Yao, and J. W. Chen, Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing, J. Appl. Phys., 105 (2009) https://doi.org/10.1063/1.3120785. 7. M. Piñón-Espitia, M. A. Garza-Navarro, and M. T. Ochoa-Lara, Superparamagnetism in pure and Mn-doped CuO nanofibers, originated by oxygen vacances, Microsc. Microanal., 27 (2021) 1782, https://doi.org/10.1017/s1431927621006528
T. H. Tran and V. T. Nguyen, Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review, Int. Sch. Res. Not., 2014 (2014) 1, https://doi.org/10.1155/2014/856592
D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, and D. Xue, RoomTemperature Ferromagnetism of Flowerlike CuO Nanostructures, https://doi.org/10.1021/jp106015t
R. N. Mariammal, K. Ramachandran, G. Kalaiselvan, S. Arumugam, B. Renganathan, and D. Sastikumar, Effect of magnetism on the ethanol sensitivity of undoped and Mn-doped CuO nanoflakes, Appl. Surf. Sci., 270 (2013) 545, https://doi.org/10.1016/j.apsusc.2013.01.084
J. M. D. Coey, Chapter 19 Magnetism of Dilute Oxides, Springer 678 (2005) 185, https://doi.org/10.1007/11417255 12
M. U. Delgado-Jaime, K. Zhang, J. Vura-Weis, and F. M. F. De Groot, CTM4DOC: Electronic structure analysis from X-ray spectroscopy, J. Synchrotron Radiat., 23 (2016) 1264, https://doi.org/10.1107/S1600577516012443
M. T. O.-L. M. Piñón-Espitia, D. Lardizabal-Gutiérrez, M.L. Camacho-Ríos, G. Herrera-Pérez, Electronic structure comparison of Cu2p and O 1s X-Ray photoelectron spectra for Cu x O nanofibers (x = 1, 2, i), Mater. Chem. Phys., 272 (2021) 124980, https://doi.org/10.1016/j.matchemphys.2021.124981
M. Piñón-Espitia, D. Lardizabal-Gutiérrez, M. L. Camacho-Ríos, G. Herrera-Pérez, A. Duarte-Moller, and M. T. Ochoa-Lara, Charge transfer effects and O2- vacancies in pure CuO nanofibers and enriched with 3.0% Mn, Mater. Chem. Phys., 295 (2022) 126989, https://doi.org/10.1016/j.matchemphys.2022.126989
K. Okada and A. Kotani, Multilet structure in Core-level XPS of High-Tc Material La2CuO4 and Related Cu - Compounds, J. Electron Spectrosc. Relat. Phenom., 52 (1990) 313, https://doi.org/10.1016/0368-2048(90)85028-8
OriginLab Corporation, Origin(Pro). Northampton, MA. USA, (2019)
T. Mizoguchi, I. Tanaka, S. P. Gao, and C. J. Pickard, First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method, J. Phys. Condens. Matter, 21 (2009) 104204, https://doi.org/10.1088/0953-8984/21/10/104204
E. Stavitski and F. M. F. De Groot, Author’s personal copy The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges, Micron, 41 (2010) 687, https://www.elsevier.com/copyright
S. Åsbrink and L. J. Norrby, A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.’s Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 26 (1970) 8, https://doi.org/10.1107/s0567740870001838
J. Ghijsen, L. H. Tjeng, H. Eskes, G. A. Sawatzky, and R. L. Johnson, Resonant photoemission study of the electronic structure of Cuo and Cu20 42 (1990) 2017, https://journals.aps.org/prb/pdf/10.1103/PhysRevB.42.2268
J. I. Langford and D. Lou, Reports on Progress in Physics Related content Powder diffraction Powder diffraction, (1996)
V. V. Mesilov et al., X-ray Diffraction and X-ray Spectroscopy Studies of Cobalt-Doped Anatase TiO2:Co Nanopowders, J. Phys. Chem. C, 121 (2017) 24235, https://doi.org/10.1021/acs.jpcc.7b05873
A. Amirsalari, A. Abdolahzadeh Ziabari, R. Taheri Ghahrizjani, and S. Farjami Shayesteh, A fundamental study on the effects of nano-silver incorporation on the structure and luminescence properties of color centers in γ’-alumina nanoparticles, J. Lumin., 192 (2017) 910, https://doi.org/10.1016/j.jlumin.2017.08.011
J. Salas-Leiva, G. Herrera-Pérez, L. Palma-Cano, G. Rojas-George, C. Ornelas-Gutiérrez, and A. Luna-Velasco, Structural and Microstructural Analysis for CuO Nanoparticles Prepared by Precipitation Method., Microsc. Microanal., 25 (2019) 1984, https://doi.org/10.1017/s1431927619010651
E. A. Sanches, J. C. Soares, A. C. Mafud, E. G. R. Fernandes, F. L. Leite, and Y. P. Mascarenhas, Structural characterization of Chloride Salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM, J. Mol. Struct., 1036 (2013) 121 https://doi.org/10.1016/j.molstruc.2012.09.084
F. Grasset et al., Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane, J. Alloys Compd., 360 (2003) 298, https://doi.org/10.1016/S0925-8388(03)00371-2
H. Qin, Z. Zhang, X. Liu, Y. Zhang, and J. Hu, Roomtemperature ferromagnetism in CuO sol-gel powders and films, J. Magn. Magn. Mater., 322 (2010) 1994, https://doi.org/10.1016/j.jmmm.2010.01.021
R. A. Borzi, S. J. Stewart, R. C. Mercader, G. Punte, and F. Garcia, Magnetic behavior of nanosized cupric oxide 230 (2001) 1513, https://doi.org/10.1016/S0304-8853(00)00943-4
H. Cao, Z. Zhou, J. Yu, and X. Zhou, DFT study on structural, electronic, and optical properties of cubic and monoclinic CuO, J. Comput. Electron., 17 (2018) 21, https://doi.org/ 10.1007/s10825-017-1057-9
G. Herrera-Pérez, J. Plaisier, A. Reyes-Rojas, and L. FuentesCobas, Electron density contour maps via Rietveld-MEM analysis using HR-XRD for the polycrystalline ferroelectric BCZT, Supl. Rev. Mex. Fis 3 (2022) 1-6, https://doi.org/10.31349/suplrevmexfis.3.010601
Z. Cvejic et al., Influence of heavy rare earth ions substitution on microstructure and magnetism of nanocrystalline magnetite, J. Alloys Compd., 472 (2009) 571, https://doi.org/10.1016/j.jallcom.2008.05.026
J. M. D. Coey, doi:10.1016/j.cossms.2006.12.002, https://doi.org/10.1016/j.cossms.2006.12.002
A. Sabirin Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O’mullane, and K. Kalantar-Zadeh, Nanostructured Copper Oxide Semiconductors: a Perspective on Materials, Synthesis methods and Applications, J. Name, 00 (2013) 1-3, https://doi.org/10.1039/x0xx00000x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Piñon-Espitia, A. Duarte-Möller, S. Verdugo-Miranda, B. López-Walle, M. T. Ochoa-Lara
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.