Theoretical investigation of the effects of solvents and para-substituents

Authors

  • S. M. A. Ridha University of Kirkuk
  • Z. Talib Ghaleb University of Kirkuk
  • A. Mirdan Ghaleb University of Kirkuk

DOI:

https://doi.org/10.31349/RevMexFis.71.010401

Keywords:

Nitrobenzene; P-halo-nitrobenzene; DFT; MP2; dipole moment; NBO; NPA; FMOs.

Abstract

The effects of halogens (F, Br, and Cl) and solvent media (acetone, ethanol, and toluene) on the structural and electronic properties of nitrobenzene compounds were investigated by combination the DFT/B3LYP and MP2 methods with 6-31 + G (d,p) basis set. The results indicate that the bond lengths between carbon-halogen atoms are increased with increased atomic size and decreased electronegativity, whereas some bond angle magnitudes are reduced than those with substitution halogens. Also, various solvent effects of studied compounds were performed with the conductor-like polarizable continuum model (CPCM) method, showing a reduction of the dipole moment by the substitution of a hydrogen atom for a ring with halogen atoms in para-position over the ring. In addition, natural bond orbitals (NBA), chemical reactivity descriptors, and the frontier molecular orbitals (FMOs) of substituted nitrobenzene were calculated. NBO analysis showed the strong interactions within a cyclic system and the fluorine atom in P-FNB is considered the best donor. Moreover, FMO analysis showed that energy band gap is related to the nature of the substituents (halogen atoms) in the para-position of the nitrobenzene compound.

References

K.-San Ju and R. E. Parales, Nitroaromatic Compounds, from Synthesis to Biodegradation, Microbiol. Mol. Biol. Rev. 74 (2010) 250. https://doi.org/10.1128/mmbr.00006-10

J. Moon et al., Site-selective and metal-free C-H nitration of biologically relevant N-heterocycles, Archives of Pharmacal Research 44 (2021) 1012, https://doi.org/10.1007/s12272-021-01351-5

Y. Kumar, S. Rani, J. Shabir, and L. S. Kumar, Nitrogen-Rich and Porous Graphitic Carbon Nitride Nanosheet-Immobilized Palladium Nanoparticles as Highly Active and Recyclable Catalysts for the Reduction of Nitro Compounds and Degradation of Organic Dyes, ACS Omega 5 (2020) 13250, https://doi.org/10.1021/acsomega.0c01280

R. O. M. A. de Souza, L. S. M. Miranda, and U. T. Bornscheuer, A retrosynthesis approach for biocatalysis in organic synthesis, Chem. Eur. J. 23 (2017) 12040, https://doi.org/10.1002/chem.201702235

S. A. Shepherd et al., Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes, Chem. Sci., 6 (2015) 3454, https://doi.org/10.1039/C5SC00913H

P. K. Arora and H. Bae, Toxicity and microbial degradation of nitrobenzene, monochloronitrobenzenes, polynitrobenzenes, and pentachloronitrobenzene, J. Chem. 2014 (2014) 265140, https://doi.org/10.1155/2014/265140

A. Gooch, N. Sizochenko, B. Rasulev, L. Gorb, and J. Leszczynski, In vivo toxicity of nitroaromatics: A comprehensive quantitative structure-activity relationship study, Environ. Toxicol. Chem. 36 (2017) 2227, https://doi.org/10.1002/etc.3761

G. Shakila, H. Saleem, and Sundaraganesan, FT-IR, FT-Raman, NMR and U-V spectral investigation: Computation of vibrational frequency, chemical shifts and electronic structure calculations of 1-bromo-4-nitrobenzene, World Scientific News 61 (2017) 150

S. Seshadri, R. Sangeetha, Rasheed M. P., M. Padmavathy, Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV), HOMO-LUMO Analysis of 1-Bromo-4-Nitrobenzene by Quantum Copmutational Methods, IRJET 3 (2016) 691

V. Arjuman, S. T. Govindaraja, S. Sakiladevi, M. Kalaivani, and S. Mohan, Spectroscopic, electronic structure and natural bond orbital analysis of Ofluoronitrobenzene and pfluoronitrobenzene: a comparative study, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 84 (2011) 196, https://doi.org/10.1016/j.saa.2011.09.029

V. Dayakumar, S. Periandy, M. Karabacak, and S. Ramalingam, Experimental (FT-IR, FT-Raman) and theoretical (HF and DFT) investigation and HOMO and LUMO analysis on the structure of p-fluoronitrobenzene, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 83 (2011) 575, https://doi.org/10.1016/j.saa.2011.09.008

V. Krishnakumar, N. Jayamani, and R. M. Mathammal, Density functional theory calculations and vibrational spectra of p-bromonitrobenzene, J. Raman Spectrosc. 40 (2009) 936, https://doi.org/10.1002/jrs.2203

B.-D. Lee and M.-J. Lee, Prediction of hydroxyl substitution site(s) of phenol, monochlorophenols and 4-chloronitrobenzene by atomic charge distribution calculations, Bull. Korean Chem. Soc. 30 (2009) 787, https://doi.org/10.5012/bkcs.2009.30.4.787

C. Moller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46 (1934) 618, https://doi.org/10.1103/PhysRev.46.618

M. J. Frisch et al., Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford (2009).

R. Dennington, T. Keith, and J. Millam, Gauss view, version 5. Semichem Inc., Shawnee Mission. (2009)

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098, https://doi.org/10.1103/PhysRevA.38.3098

C. Lee, W. Yang, and R. G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785, https://doi.org/10.1103/PhysRevB.37.785

S. M. A. Ridha, Z. T. Ghalib, and A. M. Ghaleb, The computational investigation of IR and UV-Vis spectra of 2-isopropyl-5-methyl-1,4-benzoquinone using DFT and HF methods, East Eur. J. Phys. 1 (2023) 197, https://doi.org/10.26565/2312-4334-2023-1-26

M. En-Nylly et al., Performance evaluation and assessment of the corrosion inhibition mechanism of carbon steel in HCl medium by a new hydrazone compound: Insights from experimental, DFT and first-principles DFT simulations, Arabian Journal of Chemistry 16 (2023) 104711, https://doi.org/10.1016/j.arabjc.2023.104711

A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural population analysis, J. Chem. Phys. 83 (1985) 735, https://doi.org/10.1063/1.449486

V. Barone, and M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A. 102 (1998) 1995, https://doi.org/10.1021/jp9716997

J. E. Huheey, E. A. Keiter, R. L. Keiter, and O. K. Mehdi, Inorganic chemistry: principles of structure and reactivity. (Pearson Education India, 2006)

S. Ramalingam, S. Periandy, B. Elanchezhian, and S. Mohan, FT-IR and FT-Raman spectra and vibrational investigation of 4-chloro-2-fluoro toluene using ab initio HF and DFT (B3LYP/B3PW91) calculations, Spectrochim. Acta Mol. Biomol. Spectrosc. 78 (2011) 429, https://doi.org/10.1016/j.saa.2010.11.005

A. Shiroudi et al., DFT study on tautomerism and natural bond orbital analysis of 4-substituted 1,2,4-triazole and its derivatives: solvation and substituent effects J. Mol. Model. 26 (2020) 57, https://doi.org/10.1007/s00894-020-4316-9

C. Desfran¸cois et al., Electron binding to valence and multipole states of molecules: Nitrobenzene, para- and metadinitrobenzenes, J. Chem. Phys. 111 (1999) 4569, https://doi.org/10.1063/1.479218

A. C. Littlejohn and J. W. Smith, 483. The Dipole Moments of Some Aromatic Nitro-compounds in relation to the Steric Inhibition of the Mesomeric Effect of the Nitro-group, J. Chem. Soc. (1957) 2476, https://doi.org/10.1039/jr9570002476

B. D. Dunnington and J. R. Schmidt, Generalization of natural bond orbital analysis to periodic systems: applications to solids and surfaces via planewave density functional Theory, J. Chem. Theory Comput. 8 (2012) 1902, https://doi.org/10.1021/ct300002t

A. E. Reed, L. A. Curtiss and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 88 (1988) 899-926. https://doi.org/10.1021/cr00088a005

V. Brenner, E. Gloaguen, M. Mons, Rationalizing the diversity of amideamide H-bonding in peptides using the natural bond orbital method, Physical Chemistry Chemical Physics, Royal Society of Chemistry 21 (2019) 24601, https://doi.org/10.1039/c9cp03825f

J. D. Mottishaw et al., Electrostatic Potential Maps and Natural Bond Orbital Analysis: Visualization and Conceptualization of Reactivity in Sanger’s Reagent, J. Chem. Educ. 92 (2015) 1846, https://doi.org/10.1021/ed5006344

R. Gangadharan, S. Sampath Krishnan, Natural bond orbital (NBO) population analysis of 1-Azanapthalene-8-ol, Acta Phys. Pol. A 125 (2014), https://doi.org/10.12693/aphyspola.125.18

S. Subashchandrabose, V. Thanikachalam, G. Manikandan, H. Saleem, and Y. Erdogdu, Synthesis and spectral characterization of bis(4-amino-5-mercapto- 1,2,4-tiazol-yl) propane, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 157 (2016) 96, https://doi.org/10.1016/j.saa.2015.12.005

H. S. Bazzi, A. Mostafa, S. Y. Alqaradawi, El-Metwally Nour, Synthesis and spectroscopic structural investigations of the charge-transfer complexes formed in the reaction of 2,6- diaminopyridine with-acceptors TCNE, chloranil, and DDQ, J. Mol. Str. 842 (2007) 1, https://doi.org/10.1016/j.molstruc.2006.12.005

D. Durga Devi, S. Manivarman and S. Subashchandrabose, Synthesis, molecular characterization of pyrimidine derivative: A combined experimental and theoretical investigation, Karbala Int. J. Mod. Sci. 3 (2017) 18, https://doi.org/10.1016/j.kijoms.2017.01.001

M. B. Smith, Jerry. March, March’s Advance Organic Chemistry Reactions, Mechanisms, and Structure, Six Ed. (John Wiley & Sons, Inc. Hoboken, New Jersey, 2007) p. 692

L. Padmaja et al., Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2, J. Raman Spectrosc. 40 (2009) 419, https://doi.org/10.1002/jrs.2145

S. Seshadri, M. P. Rasheed, and R. Sangeetha, Vibrational spectroscopic (FT-IR and FT-Raman) studies, HOMO LUMO analysis and electrostatic potential surface of 2-amino-4, 5-dimethyl-3-furancarbonitrile, IOSR J. Appl. Chemistry 15 (2015) 87, https://doi.org/10.9790/5736-088287100

J. Aihara, Reduced HOMO-LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. A 103 (1999) 7487, https://doi.org/10.1021/jp990092i

D. E. Manolopoulos, J. C. May and S. E. Down, Theoretical studies of the fullerenes: C34 to C70, Chem. Phys. Lett. 181 (1991) 105, https://doi.org/10.1016/0009-2614(91)90340-F

Y. Ruiz-Morales, HOMO-LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I, J. Phys. Chem. A 106 (2002) 11283, https://doi.org/10.1021/jp021152e

D. R. Lide, Handbook of chemistry and physics, (84th edition, CRC Press, Boca Raton, 2004)

R. G. Parr, L. Von Szentpaly, S. Liu, Electrophilicity Index, J. Am. Chem. Soc. 121 (1999) 1922, https://doi.org/10.1021/ja983494x

R. G. Parr, R. G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (1983) 7512, https://doi.org/10.1002/chin.198413001

H. S. Smalo, P.-O. Astrand, and S. Ingebrigtsen, Calculation of Ionization Potentials and Electron Affinities for Molecules Relevant for Streamer Initiation and Propagation, IEEE Transactions on Dielectrics and Electrical Insulation 17 (2010) 3, https://doi.org/10.1109/TDEI.2010.5492245

Downloads

Published

2025-01-01

How to Cite

[1]
S. M. A. Ridha, Z. Talib Ghaleb, and A. Ghaleb, “Theoretical investigation of the effects of solvents and para-substituents”, Rev. Mex. Fís., vol. 71, no. 1 Jan-Feb, pp. 010401 1–, Jan. 2025.

Issue

Section

04 Atomic and Molecular Physics