Raman spectra of thermally excited Brazil nut oil and experimental and theoretical correlation of oleic acid

Authors

  • Quesle Martins Fundação Universidade Federal de Rondônia
  • A. F. Sonsin Fundação Universidade Federal de Rondônia
  • L. G. F. Silva Instituto Federal de Educação, Ciência e Tecnologia
  • A. Ribas Fundação Universidade Federal de Rondônia
  • D. L. L. Oliveira Fundação Universidade Federal de Rondônia
  • R. C. S. Lima Fundação Universidade Federal de Rondônia

DOI:

https://doi.org/10.31349/RevMexFis.71.010502

Keywords:

Raman spectroscopy; density functional theory; Brazil nuts oil; thermal analysis

Abstract

In this study, Raman spectra of Brazil nut oil were collected through a frying process at temperatures ranging from 50 °C to 250 °C, and of oleic acid at room temperature to compare their respective vibrational bands. The theoretical and scaled Raman frequencies of the oleic acid structure were obtained with the Density Functional Theory, employed using the basis set of the 6-311G+(d,p) Gaussian type orbital and the B3LYP functional. Experimental results reveal subtle changes in the spectra of Brazil nut oil from 210 °C onwards, characterized mainly by a decrease in the Raman signal and broadening of certain bands, such as those observed at 1746 cm-1, 2726 cmcm-1 and 3012 cmcm-1. At temperatures around 230 °C to 250 °C, Brazil nut oil undergoes advanced thermal degradation. The linear fit data demonstrate a linear relationship between the Raman signal and temperature increase, with R2 values of 0.999 and 0.977, for some bands. The Density Functional Theory method proved to be useful in predicting oleic acid spectra and vibrational signatures were assigned with the help of the VEDA program. This work highlights the potential of Raman spectroscopy to detect changes in Brazil nut oil during frying.

References

M.A.P. Muniz et al., Physicochemical characterization, atty acid composition, and thermal analysis of Bertholletia excelsa HBK oil. Pharmacogn Mag. 11 (2015) 147, https://doi.org/10.4103/0973-1296.149730

Q.S. Martins, C.A. Aguirre, J. Farias, Approach by Raman and infrared spectroscopy in three vegetable oils from the Brazilian Amazon, Rev. Mex. Fis., 4 (2019) 328, https://doi.org/10.31349/RevMexFis.65.328

Q.S. Martins, L.M.S.Santos, J.L.B.Faria, Raman spectra and ab-initio calculations in Bertholletia excelsa oil, Vib. Spectrosc. 106 (2020) 102986, https://doi.org/10.1016/j.vibspec.2019.102986

B. R. Cardoso, G. B. S. Diarte, B. Z. Reis, and S. M. F. Cozzolino, Brazil nuts: Nutritional composition, health benefits and safety aspects, Food Research International, 100 (2017) 9- 18. https://doi.org/10.1016/j.foodres.2017.08.036

H. P. Cornelio-Santiago, R. B. Bodini, and A. L. Oliveira, Potential of Oilseeds Native to Amazon and Brazilian Cerrado Biomes: Benefits, Chemical and Functional Properties, and Extraction Methods, J. Am. Oil Chem. Soc. 98 (2021) 3-20. https://doi.org/10.1002/aocs.12452

A. Ibiapina, L. S. Gualberto, B. B. Dias, B. C. B. Freitas, G. A. S. Martins, and A. A. M. Filho, Essential and fixed oils from Amazonian fruits: properties and applications, Critical Reviews in Food Science and Nutrition, 62 (2021) 8842, https://doi.org/10.1080/10408398.2021.1935702

F. D. Gunstone, Vegetable Oils in Food Technology: Composition, Properties and Uses, (John Wiley Sons, 2011). https://doi.org/10.1002/9781444339925

J. M. deMan in: CK Chow (Ed) Fatty Acids in Foods and their Health Implications, Cap. 2, (2007), pp. 17-45

R. D. O’brien, Fats and Oils: Formulating and Processing for Applications, (CRC press, Boca Raton, 2008). https://doi.org/10.1201/9781420061673

R. Zhang et al., Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots, J. Agric. Food Chem. 63 (2015) 10508, https://doi.org/10.1021/acs.jafc.5b04691

M. L. S. Albuquerque et al. Characterization of Buriti (Mauritia flexuosa L.) oil by absorption and emission spectroscopies, J. Braz. Chem. Soc. 16 (2005) 1113, https://doi.org/10.1590/S0103-50532005000700004

E. Choe, and D. B. Min, Chemistry of deep-fat frying oils, J. Food Sci. 72 (2007) 77-86. https://doi.org/10.1111/j.1750-3841.2007.00352.x

A. Thomas, B. Matthäus, and H. Fiebig, Fats and fatty oils, (Wiley Online Library, 2015), pp. 1-84. https://doi.org/10.1002/14356007.a10 173.pub2

A. L. S. Carvalho, M. C. Martelli, S. C. C. Nascimento, and D. S. B. Brasil, Brazil Nut oil: extraction methods and industrial applications Research, Society and Development, 11 (2022) e29511427256, https://doi.org/10.33448/rsd-v11i4.27256

M. Meenu, E. A. Decker, and B. Xu, Application of vibrational spectroscopic techniques for determination of thermal degradation of frying oils and fats: a review, Critical Reviews in Food Science and Nutrition, 21 (2021) 5744, https://doi.org/10.1080/10408398.2021.1891520

H. Lam, P. K. Roy, S. Chattopadhyay, Thermal degradation in edible oils by surface enhanced Raman spectroscopy calibrated with iodine values, Vib. Spectrosc., 106 (2020) 103018, https://doi.org/10.1016/j.vibspec.2019.103018

C. Lee, W. Yang, and R. G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 98 (1988) 785, https://doi.org/10.1103/PhysRevB.37.785

X. Wu, S. Gao, J. S. Wang, H. Wang, Y. W. Huanga, Y. Zhaod, The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation, Anlst., 137 (2012) 4226, https://doi.org/10.1039/C2AN35378D

E. R. Davidson, Comment on Comment on Dunning’s correlation-consistent basis sets, Chem. Phys. Lett., 260 (1996) 514, https://doi.org/10.1016/0009-2614(96)00917-7

M.H. Jamroz, Vibrational Energy Distribution Analysis ´ (VEDA): Scopes and limitations, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114 (2013) 220, https://doi.org/10.1016/j.saa.2013.05.096

M.J. Frisch et al., Gaussian 09 (Wallingford, CT, USA: Gaussian, 2009)

A. D. Becke, Density-functional thermochemistry III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648, https://doi.org/10.1063/1.464913

T. Yanai, D. Tew, and N. Handy, A new hybrid exchangecorrelation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 393 (2004) 51, https://doi.org/10.1016/j.cplett.2004.06.011

W. S. Martini, B. L. S. Porto, M. A. L. Oliveira, and A. C. Santana, Comparative Study of the Lipid Profiles of Oils from Kernels of Peanut, Babassu, Coconut, Castor and Grape by GCFID and Raman Spectroscopy, J. Braz. Chem. Soc. 29 (2018) 390, https://dx.doi.org/10.21577/0103-5053.20170152

J. R. Beattie, S. E. J. Bell, B. W. Moss, A critical evaluation of Raman spectroscopy for the analysis of lipids: Fatty acid methyl esters, Lipids, 39 (2004) 407. https://doi.org/10.1007/s11745-004-1245-z

S. Mahesar, S. T. H. Sherazi, A. R. Khaskheli, A. A. Kandhro, and S. Uddin, Analytical approaches for the assessment of free fatty acids in oils and fats, Anal. Methods, 6 (2014) 4956, https://doi.org/10.1039/C4AY00344F

J. Qiu, H. Hou, I. Yang, and X. Chen, Raman Spectroscopy Analysis of Free Fatty Acid in Olive Oil, Appl. Sci. 9 (2019) 4510. https://doi.org/10.3390/app9214510

V. Baeten, Raman spectroscopy in lipid analysis, Lipid Technol. 22 (2010) 36, https://doi.org/10.1002/lite.200900082

H. Schulz, M. Baranska, Identification and quantification of valuable plant substances by IR and Raman spectroscopy, Vib. Spectrosc. 43 (2007) 13, https://doi.org/10.1016/j.vibspec.2006.06.001

F. Huang et al., Identification of waste cooking oil and vegetable oil via Raman spectroscopy, J. Raman Spectrosc. 47 (2016) 860, https://doi.org/10.1002/jrs.4895

S.K. Ku et al., The harmful effects of consumption of repeatedly heated edible oils: a short review. Clin Ter. 4 (2014) 217, https://pubmed.ncbi.nlm.nih.gov/25203337/

Q. Zhang, A.S.M. Saleh, J. Chen, snd Q. Shen, Chemical alterations taken place during deep-fat frying based on certain reaction products: A review, Chemistry and Physics of Lipids, 6 (2012) 662, https://doi.org/10.1016/j.chemphyslip.2012.07.002

R. M. El-Abassy, P. Donfack, and A. Materny, Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration, J. Raman Spectrosc. 40 (2009) 1284-1289. https://doi.org/10.1002/jrs.2279

M. Bennion and F. Hanning, Effect of different fats and oils and their modification on changes during frying, Food Technology, 10 (1956) 229-232

S.H. Yoon, S.K. Kim, K.H. Kim, T.W. Kwon, and Y.K. Teah, Evaluation of physicochemical changes in cooking oil during heating, J. Am. Oil Chem. Soc., 64 (1987) 870, https://doi.org/10.1007/BF02641496

G. Yen, C. Shao, C. Chen, and P. Duh, Effects of Antioxidant and Cholesterol on Smoke Point of Oils, LWT - Food Science and Technology, 30 (1997) 648, https://doi.org/10.1006/fstl.1996.0236

J.E. Albuquerque, B.C.L. Santiago, J.C.C. Campos, A.M. Reis, C.L. Silva, J.P. Martins, J.S.R. Coimbra, Photoacoustic Spectroscopy as an Approach to Assess Chemical Modifications in Edible Oils, Journal of the Brazilian Chemical Society, 3 (2013), https://doi.org/10.5935/0103-5053.20130047

I. P. R. Falco, N. G. Teruel, S. P. Moya, M. L. M. Carratalá, Kinetic study of olive oil degradation monitored by Fourier transform infrared spectrometry. Application to oil characterization, J Agric Food Chem. 47 (2012) 11800, https://doi.org/10.1021/jf3035918

M. Poiana, G.A. Mousdis, C.A. Georgiou, E. Alexa, D. Moigradean, I. Cocan, Detection of thermal processing impact on olive and sunflower oil quality by FTIR spectroscopy, Journal of Agroalimentary Processes and Technologies, 19 (2013) 48, https://journal-of-agroalimentary.ro/cauta?termen=detection

Y. Li, T. Fang, S. Zhu, F. Huang, Z. Chen, dmg Y. Wang, Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS, Spectrochim. Acta A, 189 (2018) 37, https://doi.org/10.1016/j.saa.2017.06.049

L. Hocevar, V. R. B. Soares, F. S. Oliveira, M. G. A. Korn, L. S. G. Teixeira, Application of multivariate analysis in midinfrared spectroscopy as a tool for the evaluation of waste frying oil blends, J. Am. Oil. Chem. Soc. 89 (2011) 781, https://doi.org/10.1007/s11746-011-1968-8

M. Y. Talpur et al., A simplified FTIR chemometric method for simultaneous determination of four oxidation parameters of frying canola oil, Spectrochim. Acta A, 149 (2015) 656, https://doi.org/10.1016/j.saa.2015.04.098

A. M. Marina, Y. B. Che Man, S. A. H. Nazimah, I. Amin, Chemical Properties of Virgin Coconut Oil, J. Am. Oil Chem. Soc. 86 (2009) 301, https://doi.org/10.1007/s11746-009-1351-1

Q. S. Martins, P. V. Almeida, Q. S. Ferreira, A. Oliveira, C. Aguirre, and J. L. B. Faria, Investigation of ostrich oil via Raman and infrared spectroscopy and predictions using the DFT method, Vibrational Spectroscopy, 104 (2019) 102945, https://doi.org/10.1016/j.vibspec.2019.102945

M. P. Andersson, P. Uvdal, New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p), The Journal of Physical Chemistry A, 109 (2005) 2937, https://doi.org/10.1021/jp045733a

D. Russell, Johnson III (Ed.), Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Release 22, NIST, 2022. https://doi.org/10.18434/T47C7Z

J. McMurry, Organic chemistry; 9 Ed.; (Cengage Learning, Boston, MA, USA, 2016)

M. C¸ ınar, B. Alim, Z. Alim, E. S¸akar, Determination of the molecular structure and spectroscopic properties of capsaicin, Radiation Physics and Chemistry, 208 (2023) 110879, http://dx.doi.org/10.2139/ssrn.4292963

J. A. Antunes et al., Study on optical, electrochemical and thermal properties of the Meldrum acid 5-aminomethylene derivative, Vib. Spectrosc. 112 (2021) 103188, https://doi.org/10.1016/j.vibspec.2020.103188

Downloads

Published

2025-01-01

How to Cite

[1]
Q. Martins, A. F. Sonsin, L. G. F. Silva, A. Ribas, D. L. L. Oliveira, and R. C. S. Lima, “Raman spectra of thermally excited Brazil nut oil and experimental and theoretical correlation of oleic acid”, Rev. Mex. Fís., vol. 71, no. 1 Jan-Feb, pp. 010502 1–, Jan. 2025.