New CaRbNaZ (Z=Si and Ge) semiconductor compounds suitable for photovoltaic and thermoelectric devices

Authors

  • A. Righi Abdelhamid Ibn Badis University
  • F. Bendahma Abdelhamid Ibn Badis University
  • A. Labdelli Abdelhamid Ibn Badis University
  • M. Mana Abdelhamid Ibn Badis University
  • R. Khenata Université de Mascara
  • T. Seddik Université Mascara
  • G. Ugur Gazi University
  • W. Ahmed UAE University

DOI:

https://doi.org/10.31349/RevMexFis.71.011001

Keywords:

Optical properties; absorption; photovoltaic cells; elastic constants; alternative green technology

Abstract

Semiconductor compounds are a fascinating type of materials that have attracted the attention of scientists because of their ability to enhance green technology by efficiently converting, storing, and transmitting waste heat into electrical energy. This research aimed to investigate the structural, electronic, elastic, optical, and thermoelectric characteristics of newly developed Quaternary Heusler alloys (QHAs) CaRbNaZ (where Z represents Si and Ge). This was achieved using the generalized gradient approximation (GGA) and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. For both approximations, CaRbNaSi and CaRbNaGe are found to be nonmagnetic semiconductors with band gaps varying in the range from 0.49 to 1.00 eV. The studied alloys additionally conform to the Slater-Pauling rule, exhibiting a specific magnetic moment of Mtot = 8 − Ztot for nonmagnetic behavior and, therefore, having a total magnetic of 0.00 µB. They possess an optical band gap comparable to the electronic band gap, along with significant absorption properties (90 × 104 and 103 × 104 cm−1 ) in visible and UV regions, respectively, proving that these compounds are promising materials for photovoltaic cells and UV radiation shields. The high merit factor values (0.76 and 0.80) at 300K confirm that CaRbNaZ (Z= Si and Ge) are suitable candidates for thermoelectric devices.

References

X. Zhang, L.-D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Mater. 1 (2015) 92. https://doi.org/10.1016/j.jmat.2015.01.001

B.I. Ismail, W.H. Ahmed, Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology, Recent Pat. Electr. Eng. 2 (2009) 27. https://doi.org/10.2174/1874476110902010027

B.G. Levi, Simple compound manifests record-high thermoelectric performance, Phys. Today 67 (2014) 14. https://doi.org/10.1063/PT.3.2404

A.D. LaLonde, Y. Pei, H. Wang, G.J. Snyder, Lead telluride alloy thermoelectrics, Mater. Today 14 (2011) 526. https://doi.org/10.1016/S1369-7021(11)70278-4

S. Yousuf, D.C. Gupta, Investigation of electronic, magnetic and thermoelectric properties of Zr2NiZ (Z = Al, Ga) ferromagnets, Mat. Chem. Phys. 192 (2017) 33. https://doi.org/10.1016/j.matchemphys.2017.01.056

H. Lamkaouane et al., Investigation of the different possible energy band structure configurations for planar heterojunction organic solar cells, Solid-State Electron. 191 (2022) 108254. https://doi.org/10.1016/j.sse.2022.108254

J.W.G. Bos, R.A. Downie, Half-Heusler thermoelectrics: a complex class of materials, J. Phys. Condens. Matter 26 (2014) 433201. https://doi.org/10.1088/0953-8984/26/43/433201

H. Kara, M.U. Kahaly, K. Özdoğan, Thermoelectric response of quaternary Heusler compound CrVNbZn, J. Alloys Compd. 735 (2018) 950. https://doi.org/10.1016/j.jallcom.2017.11.022

A. Berche and P. Jund, Oxidation of half-Heusler NiTiSn materials: Implications for thermoelectric applications, Intermetallics 92 (2018) 62. https://doi.org/10.1016/j.intermet.2017.09.014

X. Dai et al., New quaternary half metallic material CoFeMnSi, J. Appl. Phys. 105 (2009) 07E901. https://doi.org/10.1063/1.3062812

Q. Gao, I. Opahle, H. Zhang, High-throughput screening for spin-gapless semiconductors in quaternary Heusler compounds, Phys. Rev. Materials 3 (2019) 024410. https://doi.org/10.1103/PhysRevMaterials.3.024410

C.K. Barman, C. Mondal, B. Pathak, A. Alam, Quaternary Heusler alloy: An ideal platform to realize triple point fermions, Phys. Rev. B 99 (2019) 045144. https://doi.org/10.1103/PhysRevB.99.045144

J. He, S.S. Naghavi, V.I. Hegde, M. Amsler, C. Wolverton, Designing and discovering a new family of semiconducting quaternary Heusler compounds based on the 18-Electron Rule, Chem. Mater. 30 (2018) 4978. https://doi.org/10.1021/acs.chemmater.8b01096

T. Roy, M. Tsujikawa, T. Kanemura, M. Shirai, Ab-initio study of electronic and magnetic properties of CoIrMnZ (Z = Al, Si, Ga, Ge) Heusler alloys, J. Magn. Magn. Mater. 498 (2020) 166092. https://doi.org/10.1016/j.jmmm.2019.166092

Y. Han, Y. Wu, T. Li, R. Khenata, T. Yang, X. Wang, Electronic, Magnetic, Half-Metallic, and Mechanical Properties of a New Equiatomic Quaternary Heusler Compound YRhTiGe: A First-Principles Study, Materials 11(5) (2018) 797. https://doi.org/10.3390/ma11050797

L. Feng, J. Ma, Y. Yang, T. Lin, L. Wang, The Electronic, Magnetic, Half-Metallic, and Mechanical Properties of the Equiatomic Quaternary Heusler Compounds FeRhCrSi and FePdCrSi: A First-Principles Study, Appl. Sci. 8(12) (2018) 2370. https://doi.org/10.3390/app8122370

H. Moujri, M. Berber, M. Mebrek, A. Boudali, T. Ouahrani, Structural, elastic, electronic, and magnetic properties of new quaternary Heusler alloy PdCoMnGa and PdCoMnAl, Indian J. Phys. 96 (2022) 1025. https://doi.org/10.1007/s12648-021-02024-1

S. Alsayegh, H. Alqurashi, E. Andharih, B. Hamad, M.O. Manasreh, First-principles investigations of the electronic, magnetic, and thermoelectric properties of CrTiRhAl quaternary Heusler alloy, J. Magn. Magn. Mater. 568 (2023) 170421. https://doi.org/10.1016/j.jmmm.2023.170421

Y. Gupta, M.M. Sinha, S.S. Verma, Exploring the structural, elastic, lattice dynamical stability and thermoelectric properties of semiconducting novel quaternary Heusler alloy LiScPdPb, J. Solid State Chem. 304 (2021) 122601. https://doi.org/10.1016/j.jssc.2021.122601

T.T. Lin, Q. Gao, G.D. Liu, X.F. Dai, X.M. Zhang, H.B. Zhang, Dynamical stability, electronic and thermoelectric properties of quaternary ZnFeTiSi Heusler compound, Curr. Appl. Phys. 19 (2019) 721. https://doi.org/10.1016/j.cap.2019.03.020

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, Efficient linearization of the augmented plane-wave method, Vienna (2001)

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865

A. Radzwan, R. Ahmed, A. Shaari, Y.X. Ng, A. Lawal, First-principles calculations of the stibnite at the level of modified Becke-Johnson exchange potential, Chin. J. Phys. 56 (2018) 1331. https://doi.org/10.1016/j.cjph.2018.03.005

M. Manzoor et al., First-principles calculations to investigate structural, electronic, optical and thermoelectric properties of novel double perovskite Cs2CeAgX6 (X = Cl, Br) for optoelectronic and thermoelectric applications, Chem. Phys. 575 (2023) 112065. https://doi.org/10.1016/j.chemphys.2023.112065

Y.S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors, Phys. Rev. B 82 (2010) 205212. https://doi.org/10.1103/PhysRevB.82.205212

D. Abdullah and D.C. Gupta, Scrutinizing the structural, optoelectronic, mechanical, and thermoelectric properties of semiconductor lead-free double perovskites A2AgMoBr6 (A = K, Rb, Cs), Opt. Quantum Electron. 55 (2023) 1277. https://doi.org/10.1007/s11082-023-05493-2

G. Rehman, M. Shafiq, Saifullah, R. Ahmad, S. JalaliAsadabadi, M. Maqbool, I. Khan, H. Rahnamaye-Aliabad, I. Ahmad, Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies, J. Electron. Mater. 45 (2016) 3314. https://doi.org/10.1007/s11664-016-4492-7

J. A. Camargo-Martínez and R. Baquero, Performance of the modified Becke-Johnson potential for semiconductors, Phys. Rev. B 86 (2012) 195106. https://doi.org/10.1103/PhysRevB.86.195106

G.K.H. Madsen, J. Carrete, M.J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231 (2018) 140. https://doi.org/10.1016/j.cpc.2018.05.010

S. Idrissi, H. Labrim, S. Ziti, L. Bahmad, Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study, Appl. Phys. A 126 (2020) 190. https://doi.org/10.1007/s00339-020-3354-6

F. Bendahma, M. Mana, S. Terkhi, S. Cherid, B. Bestani, S. Bentata, Investigation of high figure of merit in semiconductor XHfGe (X = Ni and Pd) half-Heusler alloys: Ab-initio study, Comput. Cond. Matter 21 (2019) e00407. https://doi.org/10.1016/j.cocom.2019.e00407

Y. Li, J. Zhu, R. Paudel, J. Huang, F. Zhou, Ab initio predictions of stability, half-metallicity and magnetism in Co2NbAl and Co2ZrAl full-Heusler alloys, Vacuum 192 (2021) 110418. https://doi.org/10.1016/j.vacuum.2021.110418

G. Srivastava, D. Weaire, The theory of the cohesive energies of solids, Adv. Phys. 36 (1987) 463. https://doi.org/10.1080/00018738700101042

J. Du, L. Feng, X. Wang, Z. Qin, Z. Cheng, L. Wang, Novel bipolar magnetic semiconducting and fully compensated ferrimagnetic semiconducting characters in newly designed LiMgPdSn-type compounds: KCaCX (X = O, S, and Se), J. Alloys Compd. 710 (2017) 1. https://doi.org/10.1016/j.jallcom.2017.03.262

J.H. Wang, S. Yip, S.R. Phillpot, D. Wolf, Crystal instabilities at finite strain, Phys. Rev. Lett. 71 (1993) 4182. https://doi.org/10.1103/PhysRevLett.71.4182

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65 (1952) 349. https://doi.org/10.1088/0370-1298/65/5/307

S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dubl. Phil. Mag. 45 (1954) 823, https://doi.org/10.1080/14786440808520496

I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals (Naukova Dumka, Kiev, 1982). 39. B. J. Abdullah, Size effect of band gap in semiconductor nanocrystals and nanostructures from density functional theory within HSE06, Mat. Sci. Semicon. Proc. 137 (2022) 106214, https://doi.org/10.1016/j.mssp.2021.106214

M. Grundmann, Kramers-Kronig Relations, In The Physics of Semiconductors: An Introduction Including Nanophysics and Applications (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010) pp. 775-776, https://doi.org/10.1007/978-3-642-13884-326

M. Irfan et al., Electronic structure and optical properties of TaNO: An ab initio study, J. Mol. Graph. Model. 92 (2019) 296, https://doi.org/10.1016/j.jmgm. 2019.08.006

K. Yamamoto, H. Ishida, Kramers-Kronig analysis applied to reflection-absorption spectroscopy, Vib. Spectrosc. 15 (1997) 27. https://doi.org/10.1016/S0924-2031(97)00017-9

H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds, J. Phys. D Appl. Phys. 40 (2007) 1507. https://doi.org/10.1088/0022-3727/40/6/S01

M. L. Cohen, J. R. Chelikowsky, Wurtzite Structure Semiconductors, In Electronic Structure and Optical Properties of Semiconductors (Springer Berlin Heidelberg, Berlin, Heidelberg, 1989) pp. 140-160, https://doi.org/10.1007/978-3-642-61338-8_9

D. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128 (1962) 2093. https://doi.org/10.1103/PhysRev.128.2093

N. Yaqoob, B. Sabir, G. Murtaza, R.M. Arif Khalil, N. Muhammad, A. Laref, Structural, electronic, magnetic, optical and thermoelectric response of half-metallic AMnTe2 (A = Li, Na, K): An ab-initio calculations, Physica B: Condens. Matter 574 (2019) 311656. https://doi.org/10.1016/j.physb.2019.08.033

L.J. Wang, A. Kuzmich, A. Dogariu, Gain-assisted superluminal light propagation, Nature 406 (2000) 277. https://doi.org/10.1038/35018520

M.A. Ali, N. Alam, Meena, S. Ali, S.A. Dar, A. Khan, G. Murtaza, A. Laref, A theoretical study of the structural, thermoelectric, and spin-orbit coupling influenced optoelectronic properties of CsTmCl3 halide perovskite, Int. J. Quant. Chem. 120 (2020) e26141. https://doi.org/10.1002/qua.26141

G.K. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (2006) 67. https://doi.org/10.1016/j.cpc.2006.03.007

S. Sâad Essaoud, A.S. Jbara, First-principles calculation of magnetic, structural, dynamic, electronic, elastic, thermodynamic and thermoelectric properties of Co2ZrZ (Z = Al, Si) Heusler alloys, J. Magn. Magn. Mater. 531 (2021) 167984. https://doi.org/10.1016/j.jmmm.2021.167984

O. Rabina, Y.M. Lin, M.S. Dresselhaus, Anomalously high thermoelectric figure of merit in Bi1−xSbx nanowires by carrier pocket alignment, Appl. Phys. Lett. 79 (2001) 81. https://doi.org/10.1063/1.1379365

T. Takeuchi, Conditions of Electronic Structure to Obtain Large Dimensionless Figure of Merit for Developing Practical Thermoelectric Materials, Mater. Trans. 50 (2009) 2359. https://doi.org/10.2320/matertrans.M2009143

N. J. Jeon, J. H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganicorganic hybrid perovskite solar cells, Nat. Mater. 13 (2014) 897. https://doi.org/10.1038/nmat4014

D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, PerovskiteBased Solar Cells: Materials, Methods, and Future Perspectives, J. Nanomater. 2018 (2018) 1. https://doi.org/10.1155/2018/8148072

D.I. Bilc, G. Hautier, D. Waroquiers, G.-M. Rignanese, P. Ghosez, Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States, Phys. Rev. Lett. 114 (2015) 136601. https://doi.org/10.1103/PhysRevLett.114.136601

J. He et al., Ultralow Thermal Conductivity in Full Heusler Semiconductors, Phys. Rev. Lett. 117 (2016) 046602. https://doi.org/10.1103/PhysRevLett.117.046602

M. Hammou, F. Bendahma, M. Mana, S. Terkhi, N. Benderdouche, Z. Aziz, B. Bouhafs, Thermoelectric and Half-Metallic Behavior of the Novel Heusler Alloy RbCrC: Ab initio DFT Study, SPIN 10 (2020) 2050029, https://doi.org/10.1142/S2010324720500290

S. Ahmad, S.D. Mahanti, Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe, Phys. Rev. B 81 (2010) 165203. https://doi.org/10.1103/PhysRevB.81.165203

K. Kaur, R. Kumar, D.P. Rai, A promising thermoelectric response of HfRhSb half-Heusler compound at high temperature: A first-principle study, J. Alloys Compd. 763 (2018) 1018, https://doi.org/10.1016/j.jallcom.2018.06.034 60. Ab. Quyoom Seh, Dinesh C. Gupta, Quaternary Heusler alloys: A future perspective for revolutionizing conventional semiconductor technology, J. Alloys Compd. 871 (2021) 159560. https://doi.org/10.1016/j.jallcom.2021.159560

R. Prakash, G. Kalpana, First-principles study on novel Febased quaternary Heusler alloys, with robust half-metallic, thermoelectric and optical properties, RSC Adv. 13 (2023) 10847. https://doi.org/10.1039/D3RA00942D

S. Singh, Dinesh C. Gupta, Lanthanum based quaternary Heusler alloys LaCoCrX (X = Al, Ga): Hunt for halfmetallicity and high thermoelectric efficiency, Results Phys. 13 (2019) 102300. https://doi.org/10.1016/j.rinp.2019.102300

Ab. Quyoom Seh, Dinesh C. Gupta, Exploration of highly correlated Co-based quaternary Heusler alloys for spintronics and thermoelectric applications, Int. J. Energy Res. 43 (2019) 8864. https://doi.org/10.1002/er.4853

Downloads

Published

2025-01-01

How to Cite

[1]
A. Righi, “New CaRbNaZ (Z=Si and Ge) semiconductor compounds suitable for photovoltaic and thermoelectric devices”, Rev. Mex. Fís., vol. 71, no. 1 Jan-Feb, pp. 011001 1–, Jan. 2025.