Thermographic study of freezing water drops: An insight on Mpemba effect

Authors

  • Argelia Balbuena Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • Emiliano Hernández Figueroa Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • Antonio del Rio Portilla Instituto de Energias Renovables, Universidad Nacional Autónoma de México http://orcid.org/0000-0001-6180-0608

DOI:

https://doi.org/10.31349/RevMexFis.70.050601

Keywords:

Droplet; thermography; Mpemba effect; heat transfer process; recalescence

Abstract

Despite decades of research, the Mpemba Effect challenges scientists, prompting further investigation and refinement of existing hypotheses. This work uses optical tools such as thermography to analyze and study the Mpemba effect on drops. We analyze times and contact angle changes with temperature with an easily controlled experiment. This work contributes to the ongoing discourse surrounding the Mpemba Effect, emphasizing the need for interdisciplinary collaboration and experimental rigor to unravel the complexities of this intriguing phenomenon. A deeper understanding of the Mpemba Effect enhances our knowledge of thermodynamics and fluid dynamics and opens avenues for practical applications in fields such as cryopreservation, meteorology, and materials science.

References

M. Jeng, The Mpemba effect: When can hot water freeze faster than cold?, American Journal of Physics 74 (2006) 514

G. S. Kell, The freezing of hot and cold water, Amercian Journal of Physics 37 (1969) 564

B. Wojciechowski, I. Owczarek, and G. Bednarz, Freezing of aqueous solutions containing gases, Crystal Research and Technology 23 (1988) 843

S. Esposito, R. De Risi, and L. Somma, Mpemba effect and phase transitions in the adiabatic cooling of water before freezing, Physica A: Statistical Mechanics and its Applications 387 (2008) 757

D. Auerbach, Supercooling and the Mpemba effect: When hot water freezes quicker than cold, American Journal of Physics 63 (1995) 882

J. D. Brownridge, When does hot water freeze faster then cold water? A search for the Mpemba effect, American Journal of Physics 79 (2011) 78

R. Holtzman and O. Raz, Landau theory for the Mpemba effect through phase transitions, Communications physics 5 (2022) 280

J. Bechhoefer, A. A. Kumar, and R. Chétrite, A fresh understanding of the Mpemba effect, Nature Reviews Phsycis 3 (2021) 534, https://doi.org/10.1038/s42254-021-00349-8

M. Vynnycky and S. Mitchell, Evaporative cooling and the Mpemba effect, Heat and Mass Transfer 46 (2010) 881.10

G. Chaudhary and R. Li, Freezing of water droplets on solid surfaces: An experimental and numerical study, Experimental Thermal and Fluid Science 57 (2014) 86

X. Zhang, X.Wu, and J. Min, Freezing and melting of a sessile water droplet on a horizontal cold plate, Experimental Thermal and Fluid Science 88 (2017) 1

L. Karlsson et al., Experimental study of the internal flow in freezing water droplets on a cold surface, Experiments in Fluids 60 (2019) 1

F. Yu et al., Experimental Study of Water Drop Freezing Process on Cryogenic Cold Surface, International Journal of Refrigeration (2023)

M. Ishikawa et al., NMR Micro-Imaging for Visualizing Freezing Behavior in Plant Tissues (The Seminar, “Molecular Mechanisms of Freezing and Freezing Avoidance in Living Organisms”), Cryobiology and cryotechnology 50 (2004) 21

S. Huang et al., Overview of biological ice nucleating particles in the atmosphere, Environment International 146 (2021) 106197

B. Zuberi et al., Heterogeneous nucleation of ice in (NH4) 2SO4-H2O particles with mineral dust immersions, Geophysical Research Letters 29 (2002) 142

D. Mudiar et al., A laboratory investigation of electrical influence on the freezing of water drops: A cloud physics perspective, J Earth Syst Sci 130 (2021) 222, https://doi.org/10.1007/s12040-021-01736-6

A. Hakimian et al., Freezing of few nanometers water droplets, Nature Communications 12 (2021) 6973, https://doi.org/10.1038/s41467-021-27346-w

K. L. Meza-Alarcon et al., Splashing of Sn-Bi-Ag solder droplets, Physics of Fluids 35 (2023) 082014, https://doi.org/10.1063/5.0155328

V. M. Trejos-Montoya et al., Falsos Positivos de la ciencia, Rev. Mex. Fis. E (2022) 10301

F. Millán, Curso de Química II, Unidad Nr. 6: Calidad de Aguas Potabilizables (Instituto Universitario Politécnico Santiago Mariño, Coordinación de Ingeniería Química y Agronomía, 2016), https://doi.org/10.13140/RG.2.1.4267.8000

A. F. Stalder et al., A snake-based approach to accurate determination of both contact points and contact angles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 286 (2006) 92

H. Jingru et al., Experimental study on the freezing process of water droplets for ice air jet technology, Scientific Reports 14 (2024) 3295

X. Zhang et al., Shape variation and unique tip formation of a sessile water droplet during freezing, Applied Thermal Engineering 147 (2019) 927

M. F. Ҫakır, An inexpensive contact angle measurement system, Rev. Mex. Fis. 68 (2022) 021001

A. D. Polyanin and A. V. Manzhirov, Handbook of mathematics for engineers and scientists (CRC Press, 2006)

J. A. del Río, F. Vázquez, and P. Sánchez, On the states of thermodynamic equilibiurm, Rev. Mex. Fis. 34 (1998) 670

Z. Meng and P. Zhang, Dynamic propagation of ice-water phase front in a supercooled water droplet, International Journal of Heat and Mass Transfer 152 (2020) 119468

G. Graeber et al., Spontaneous self-dislodging of freezing water droplets and the role of wettability, Proceedings of National Academy of Sciences 114 (2017) 11040

Downloads

Published

2024-09-01

How to Cite

[1]
A. Balbuena Ortega, E. Hernández Figueroa, and A. del Rio Portilla, “Thermographic study of freezing water drops: An insight on Mpemba effect”, Rev. Mex. Fís., vol. 70, no. 5 Sep-Oct, pp. 050601 1–, Sep. 2024.