In-situ momentum dispersion in a single crystal of MoS2

Authors

  • Juan Manuel Merlo Ramirez Physics and Astronomy Department, Vassar College
  • Madeleine Hoag Carhart Physics and Astronomy Department, Vassar College

DOI:

https://doi.org/10.31349/RevMexFis.70.050201

Keywords:

2D materials, Near-field microscopy, TMDCs

Abstract

In this letter, we investigate the momentum dispersion in a MoS2 flake as a function of the thickness in a single crystal with several height steps. The outcomes of our study rely on the utilization of near-field microscopy and an excitation field in the strong-coupling regime. The observed propagating modes have characteristics that are consistent with transverse magnetic (TM) modes, which can be attributed to the investigated thicknesses. Numerical simulations support our experimental findings and correspond with previously reported studies.

References

L. Huang et al., Enhanced light-matter interaction in twodimensional transition metal dichalcogenides, Rep. Prog. Phys. 85 (2022) 046401, https://doi.org/10.1088/1361-6633/ac45f9

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, Graphene Plasmonics: A Platform for Strong Light Matter Interactions, Nano Lett. 11 (2011) 3370, https://dx.doi.org/10.1021/nl201771h

J. Pei, J. Yang, and Y. Lu, Elastic and Inelastic Light-Matter Interactions in 2D Materials, IEEE J. Quantum Electron. 23 (2017) 9000208, https://doi.org/10.1109/JSTQE.2016.2574599

X. Zhao et al., The Strength of Mechanically-Exfoliated Monolayer Graphene Deformed on a Rigid Polymer Substrate, Nanoscale 11 (2019) 14339, https://doi.org/10.1039/C9NR04720D

A. A. Balandin et al., Superior Thermal Conductivity of SingleLayer Graphene, Nanoletters 8 (2008) 902, https://doi.org/10.1021/nl0731872

C. Lin et al., Direct Band Gap in Multilayer Transition Metal Dichalcogenide Nanoscrolls with Enhanced Photoluminescence, ACS Materials Lett. 4 (2022) 1547, https://doi.org/10.1021/acsmaterialslett.2c00162

P. Kusch et al., Strong light-matter coupling in MoS2, Phys. Rev. B 103 (2021) 235409, https://doi.org/10.1103/PhysRevB.103.235409

O. Lopez-Sanchez et al., Ultrasensitive Photodetectors Based on Monolayer MoS2, Nat. Nanotech. 8 (2013) 497, https://doi.org/10.1038/NNANO.2013.100

Z. Fei et al., et al., Nano-Optical Imaging of WSe2Waveguide Modes Eevealing Light-Exciton Interactions, Phys. Rev. B 94 (2016) 081402, https://doi.org/10.1103/PhysRevB.94.081402

D. Hu et al., Probing optical anisotropy of nanometerthin van der waals microcrystals by near-field imaging, Phys. Rev. B 8 (2017) 081402, https://doi.org/110.1038/s41467-017-01580-7

Q. Zhao et al., An inexpensive system for the deterministic transfer of 2D materials, J. Phys.: Mater 3 (2020) 016001, https://doi.org/10.1103/PhysRevB.94.081402

R. Frisenda et al., Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials, Chem. Soc. Rev. 43 (2018) 53, https://doi.org/10.1039/c7cs00556c

J. M. Merlo, C. Rhoads, and M. H. Carhart, Anisotropic Generation and Detection of Surface Plasmon Polaritons Using Near-Field Apertured Probes, IEEE Phot. Jour. 15 (2023) 4800405, https://doi.org/10.1109/JPHOT.2023.3309890

Downloads

Published

2024-09-01

How to Cite

[1]
J. M. Merlo Ramirez and M. H. Carhart, “ In-situ momentum dispersion in a single crystal of MoS2”, Rev. Mex. Fís., vol. 70, no. 5 Sep-Oct, pp. 050201 1–, Sep. 2024.