Synthesis of hydrophilic carbon nanotubes via chemical vapor deposition using silicon oxide nanoparticles as seeds with potential biomedical applications
DOI:
https://doi.org/10.31349/RevMexFis.71.031002Keywords:
Carbon Nanotubes, Chemical Vapor Deposition, Silicon Oxide NanoparticlesAbstract
The research presented in this paper explores the synthesis of hydrophobic carbon nanotubes using silicon oxide nanoparticles as seeds through chemical vapor deposition. The study demonstrates the successful production of uniform-sized carbon nanotubes, essential for controlling their properties in diverse applications. By employing silicon oxide nanoparticles as catalysts, the pro- cess yields carbon nanotubes with specific characteristics suitable for potential biomedical applications. The investigation also highlights the dispersion in the size of silicon oxide nanoparticles and its potential influence on their collective behavior, empha- sizing the importance of this factor for future research endeavors. These findings contribute valuable insights to the field of carbon nanotubes, particularly in the context of biomedical applications, facilitating further advancements in this area.
References
P. J. F. Harris, ”Carbon nanotube science: synthesis, properties and applications,” Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511609701.
M. Meyyappan, ”Carbon nanotubes: science and applications,” CRC press, 2004. https://doi.org/10.1201/9780203494936.
S. Iijima, ”Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991. https://doi.org/10.1038/354056a0.
M. Kumar and Y. Ando, ”Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” Journal of nanoscience and nanotechnology, vol. 10, no. 6, pp. 3739-3758, 2010. https://doi.org/10.1166/jnn.2010.2939.
C. Journet et al., ”Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature, vol. 388, no. 6644, pp. 756-758, 1997. https://doi.org/10.1038/41972.
T. Guo et al., ”Catalytic growth of single-walled nanotubes by laser vaporization,” Chemical physics letters, vol. 243, no. 1-2, pp. 49-54, 1995. https://doi.org/10.1016/0009-2614(95)00825-O
K. Kostarelos, et al., ”In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging,” Nano letters, vol. 9, no. 9, pp. 3262-3267, 2009. https://doi.org/10.1021/nl8032608
Z. Liu, et al., ”Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery,” Nano Research, vol. 2, no. 2, pp. 85-120, 2009. https://doi.org/10.1007/s12274-009-9009-8
K. Kostarelos, et al., ”Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type,” Nature nanotech- nology, vol. 2, no. 2, pp. 108-113, 2007. https://doi.org/10.1038/nnano.2006.209
J. Kaur, G. S. Gill, and K. Jeet, ”Applications of carbon nanotubes in drug delivery: A comprehensive review,” in Characterization and biology of nanomaterials for drug delivery, pp. 113-135, 2019. https://doi.org/10.1016/B978-0-12-814031-4.00005-2
L. Lacerda, et al., ”Carbon nanotubes as nanomedicines: from toxicology to pharmacology,” Advanced drug delivery reviews, vol. 58, no. 14, pp. 1460-1470, 2006. https://doi.org/10.1016/j.addr.2006.09.015
J. Wang, ”Carbon-nanotube based electrochemical biosensors: A review,” Electroanalysis, vol. 17, no. 1, pp. 7-14, 2005. https://doi.org/10.1002/elan.200403113
N.W. Kam, et al., ”Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction,”
Proceedings of the National Academy of Sciences, vol. 102, no. 33, pp. 11600-11605, 2005. https://doi.org/10.1073/pnas.0502680102
J. G. Dubois, et al., ”Ultrasensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes,” Stroke, vol. 48, no. 8, pp. 2359-2366, 2017. https://doi.org/10.1161/STROKEAHA.111.000544.
G. Hong, S. Diao, A.L. Antaris and H. Dai, ”Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy,” Chemical reviews, vol. 115, no. 19, pp. 10816–10906, 2015. https://doi.org/10.1021/acs.chemrev.5b00008
Han, Y., Lu, Z., Teng, Z., Liang, J., Guo, Z., Wang, D., ... & Yang, W. (2017). Unraveling the growth mechanism of silica particles in the stober method: in situ seeded growth model. Langmuir, 33(23), 5879-5890. https://doi.org/10.1021/acs.langmuir.7b01140
S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, R. Pisana, A. Parvez, F. Cervantes-Sodi, A. C. Ferrari, R. Dunin-Borkowski, S. Lizzit, L. Petaccia, A. Goldoni and J. Robertson, ”In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation,” Nano letters, vol. 7, no. 3, pp. 602-608, 2007. https://doi.org/10.1021/nl0624824
G. D. Nessim, ”Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition,”
Nanoscale, vol. 2, no. 8, pp. 1306-1323, 2010. https://doi.org/10.1039/B9NR00427K
Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang and H. Dai, ”Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” The Journal of Physic[21] C. Singh, M. S. Shaffer and A. H. Windle, ”Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon, vol. 41, no. 2, pp. 359-368, 2003.al Chemistry B, vol. 105, no. 46, pp. 11424-11431, 2001. https://doi.org/10.1021/jp012085b
M. Kumar and Y. Ando, ”Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 6, pp. 3739-3758, 2010. https://doi.org/10.1166/jnn.2010.2939
J. Kong, A. M. Cassell and H. Dai, ”Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical physics letters, vol. 292, no. 4-6, pp. 567-574, 1998. https://doi.org/10.1016/S0009-2614(98)00745-3
C. Singh, M. S. Shaffer and A. H. Windle, ”Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon, vol. 41, no. 2, pp. 359-368, 2003. https://doi.org/10.1016/S0008-6223(02)00314-7 [
Q. Wu, H. Zhang, C. Ma, D. Li, L. Xin, X. Zhang, et al., ”SiO2-promoted growth of single-walled carbon nanotubes on an alumina supported catalyst,” Carbon, vol. 176, pp. 367-373, 2021. https://doi.org/10.1016/j.carbon.2021.01.143
J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith and R. E. Smalley, ”Cat- alytic growth of single-wall carbon nanotubes from metal particles,” Chemical Physics Letters, vol. 296, no. 1-2, pp. 195-202, 1998. https://doi.org/10.1016/S0009-2614(02)00541-9
Berdinsky, A. S., Alegaonkar, P. S., Lee, H. C., Jung, J. S., Han, J. H., Yoo, J. B., ... & Chadderton, L. T. (2007). Growth of carbon nanotubes in etched ion tracks in silicon oxide on silicon. Nano, 2(1), 59-67. https://doi.org/10.1142/S1793292007000386
Tripathi, N., Mishra, P., Joshi, B., & Islam, S. S. (2015). Precise control over physical characteristics of carbon nanotubes by differential variation of argon flow rate during chemical vapor deposition processing: A systematic study on growth kinetics. Materials Science in Semiconductor Processing, 35, 207-215. https://doi.org/10.1016/j.mssp.2015.03.014
Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, ”Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, vol. 282, no. 5391, pp. 1105-1107, 1998. https://doi.org/10.1126/science.282.5391.1105
M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson and W. I. Milne, ”Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” Journal of Applied Physics, vol. 90, no. 10, pp. 5308-5317, 2001. https://doi.org/10.1063/1.1410322
W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, ”Large-scale synthesis of aligned carbon nanotubes,” science, vol. 274, no. 5293, pp. 1701-1703, 1996. https://doi.org/10.1126/science.274.5293.1701
M. Meyyappan, L. Delzeit, A. Cassell and D. Hash, ”Carbon nanotube growth by PECVD: a review,” Plasma Sources Science and Technology, vol. 12, no. 2, p. 205, 2003. https://doi.org/10.1088/0963-0252/12/2/312
K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts and A. Lucas, ”Fe-catalyzed carbon nanotube formation,” Carbon, vol. 34, no. 10, pp. 1249-1257, 1996. https://doi.org/10.1016/0008-6223(96)00074-7
G. Zhong, T. Iwasaki, K. Honda, Y. Furukawa, I. Ohdomari and H. Kawarada, ”Very high yield growth of vertically aligned single- walled carbon nanotubes by point-arc microwave plasma CVD,” Chemical vapor deposition, vol. 11, no. 3, pp. 127-130, 2005. https://doi.org/10.1002/cvde.200404197
L. C. Qin, ”Determination of the chiral indices of carbon nanotubes by electron diffraction,” Chemical physics letters, vol. 325, no. 1-3, pp. 125-128, 2000. https://doi.org/10.1039/B614121H
L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen and M. Meyyappan, ”Multiwalled carbon nanotubes by chemical va- por deposition using multilayered metal catalysts,” The Journal of Physical Chemistry B, vol. 106, no. 22, pp. 5629-5635, 2002. https://doi.org/10.1021/jp0203898
A. Kohls, M. Maurer Ditty, F. Dehghandehnavi, and S. Y. Zheng, ”Vertically aligned carbon nanotubes as a unique material for biomedical applications,” ACS Appl. Mater. Interfaces, vol. 14, no. 5, pp. 6287-6306, 2022. https://doi.org/10.1021/acsami.1c20423
S. K. Prajapati, A. Malaiya, P. Kesharwani, D. Soni, y A. Jain, ”Biomedical applications and toxicities of carbon nanotubes,” Drug Chem.
Toxicol., vol. 45, no. 1, pp. 435-450, 2022. https://doi.org/10.1080/01480545.2019.1709492
(a, b, d) D. S. Ahmeda, A. J. Haider, M. R. Mohammad, Comparesion of Functionalization of multi walled carbon nanotubes treated by oil olive and nitric acid, Energy Procedia, 36, (2013), 1111–1118. https://doi.org/10.1016/j.egypro.2013.07.126.
F. A. Azri, R. Sukor, R. Hajian, N. A. Yusof, F. A. Bakar and J. Selamat, ”Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development,” Asian Journal of Chemistry, vol. 29, no. 1, p. 31, 2017. https://doi.org/10.14233/ajchem.2017.20104.
P. Roach, N.J. Shirtcliffe, M.I. Newton, ”Progresses in superhydrophobic surface development,” Soft Matter, vol. 4, no. 2, pp. 224-240, 2008. https://doi.org/10.1039/B712575P.
J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, ”Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites,” Carbon, vol. 44, no. 9, pp. 1624-1652, 2006. https://doi.org/10.1016/j.carbon.2006.02.038.
Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, ”Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties,” Progress in Polymer Science, vol. 35, no. 3, pp. 357-401, 2010. https://doi.org/10.1016/j.progpolymsci.2009.09.003.
G. N. Arenas and L. A. Can˜as, ”Procedimiento para medir a´ngulos de contacto en so´lidos particulados finos,” Scientia et tecnica, vol. 1, no. 36, 2007.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. A. Hernández-Abril, J. A. Heredia-Cancino, A. G. Luque-Alcaraz, H. J. Higuera-Valenzuela

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.