Enhancing heat transfer performance: A comprehensive review of perforated obstacles

Authors

  • M. Menni University Center Salhi Ahmed Naama
  • N. Kaid University Center Salhi Ahmed Naama
  • M. A. Alkhafaji National University of Science and Technology
  • M. Bayram Biruni University
  • O. M. Ikumapayi Afe Babalola University
  • A. J. Chamkha Kuwait College of Science and Technology

DOI:

https://doi.org/10.31349/RevMexFis.71.030601

Keywords:

Heat transfer enhancement; fluid flow; heat exchangers; perforations; numerical simulations; experimental studies; pressure drop.

Abstract

Heat exchangers (HEs) play a pivotal role in numerous industrial processes and thermal management systems, where efficient heat transfer (HT) is essential for optimal performance. This review paper examines the utilization of perforated obstacles as a means to enhance HT within HEs, integrating insights from both numerical simulations and experimental studies. The assessment entails a thorough analysis of the diverse geometric features of the perforated obstacles, encompassing perforation shape, size, arrangement, and spacing, alongside operational parameters. This examination vividly illustrates their profound influence on overall HE performance. Our investigation strongly underscores the efficacy of perforated obstacles in augmenting HT rates and reducing pressure drop, as evidenced by notable improvements in HT coefficients. Moreover, the varied industrial applications of perforated obstacles are investigated, encompassing HVAC systems, automotive cooling, refrigeration, and process industries, thus emphasizing their versatility and scalability. Overall, this review provides a comprehensive understanding of the potential of perforated obstacles in revolutionizing HT efficiency within HEs, paving the way for advancements in thermal engineering and industrial processes.

Author Biography

M. Bayram, Biruni University

Computer engineering

References

R. Rebhi, Y., Menni, G., Lorenzini, and H. Ahmad, Forced-convection heat transfer in solar collectors and heat exchangers: a review, Journal of Advanced Research in Applied Sciences and Engineering Technology 26(3) (2022) 1-15. https://doi.org/10.37934/araset.26.3.115

H. Ahmad, N. Sakhri, Y. Menni, M. Omri, and H. Ameur, Experimental study of the efficiency of earth-to-air heat exchangers: Effect of the presence of external fans, Case Studies in Thermal Engineering 28 (2021) 101461. https://doi.org/10.1016/j.csite.2021.101461

F. Djeffal, L. Bordja, R. Rebhi, M. Inc, H. Ahmad, F. Tahrour, , ... and T. M. Jawa, Numerical investigation of thermal-flow characteristics in heat exchanger with various tube shapes, Applied Sciences 11(20) (2021) 9477. https://doi.org/10.3390/app11209477

F. Tahrour, H. Ahmad, H. Ameur, T. Saeed, H. Abu-Zinadah, and Y. Menni, 3D numerical study and comparison of thermal-flow performance of various annular finned-tube designs, Journal of Ocean Engineering and Science 8(3) (2023) 294-307. https://doi.org/10.1016/j.joes.2022.02.009

N. Sakhri, Y. Menni, A. J. Chamkha, M. Salmi, and H. Ameur, Earth to air heat exchanger and its applications in arid regions—an updated review, Tecnica Italiana Ital J Eng Sci 64 (2020) 83-90.https://doi.org/10.18280/ti-ijes.640113

N. Sakhri, Y. Menni, A. J. Chamkha, G. Lorenzini, H. Ameur, N. Kaid, and M. Bensafi, Experimental study of an earth-to-air heat exchanger coupled to the solar chimney for heating and cooling applications in arid regions, Journal of Thermal Analysis and Calorimetry 145 (2021) 3349-3358. https://doi.org/10.1007/s10973-020-09867-6

N. Sakhri, A. Moussaoui, Y. Menni, M. Sadeghzadeh, and H. Ahmadi, New passive thermal comfort system using three renewable energies: Wind catcher, solar chimney and earth to air heat exchanger integrated to real‐scale test room in arid region (Experimental study), International Journal of Energy Research 45(2) (2021) 2177-2194. https://doi.org/10.1002/er.5911

C. H. Phillips, G. Lauschke, and H. Peerhossaini, Intensification of batch chemical processes by using integrated chemical reactor-heat exchangers, Applied thermal engineering 17(8-10) (1997) 809-824. https://doi.org/10.1016/S1359-4311(96)00061-0

P. L. Orts-Gonzalez, P. K. Zachos, G.D. Brighenti, The impact of heat exchanger degradation on the performance of a humid air turbine system for power generation, Applied Thermal Engineering 149 (2019) 1492-1502. https://doi.org/10.1016/j.applthermaleng.2018.12.061

H. Zheng, G. Tian, S. Zeng, Z. Zhang, Z. Lv, and Q. Wang, Study on the performance of multi-medium heat exchanger in solar composite refrigeration system, Applied Thermal Engineering (2024) 122826. https://doi.org/10.1016/j.applthermaleng.2024.122826

S. Liu, and M. Sakr, A comprehensive review on passive heat transfer enhancements in pipe exchangers, Renewable and sustainable energy reviews 19 (2013) 64-81. https://doi.org/10.1016/j.rser.2012.11.021

M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji, Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices, Renewable and Sustainable Energy Reviews 49 (2015) 444-469.

S. S. Mousavi Ajarostaghi, M. Zaboli, H. Javadi, B. Badenes, and J. F. Urchueguia, A review of recent passive heat transfer enhancement methods, Energies 15(3) (2022) 986. https://doi.org/10.3390/en15030986

R. Andrzejczyk, T. Muszynski, and P. Kozak, Experimental and computational fluid dynamics studies on straight and U-bend double tube heat exchangers with active and passive enhancement methods, Heat Transfer Engineering 42(3-4) (2021) 167-180. https://doi.org/10.1080/01457632.2019.1699279

S. Thapa, S. Samir, K. Kumar, and S. Singh, A review study on the active methods of heat transfer enhancement in heat exchangers using electroactive and magnetic materials, Materials Today: Proceedings 45 (2021) 4942-4947. https://doi.org/10.1016/j.matpr.2021.01.382

S. Bhattacharyya, D. K. Vishwakarma, A. Srinivasan, M. K. Soni, V. Goel, M. Sharifpur, ... and J. Meyer, Thermal performance enhancement in heat exchangers using active and passive techniques: a detailed review, Journal of Thermal Analysis and Calorimetry 147(17) (2022) 9229-9281. https://doi.org/10.1007/s10973-021-11168-5

A. A. Abd, M. Q. Kareem, and S. Z. Naji, Performance analysis of shell and tube heat exchanger: Parametric study, Case studies in thermal engineering 12 (2018) 563-568. https://doi.org/10.1016/j.csite.2018.07.009

M. M. Rashidi, I. Mahariq, M. Alhuyi Nazari, O. Accouche, and M. M. Bhatti, Comprehensive review on exergy analysis of shell and tube heat exchangers. Journal of Thermal Analysis and Calorimetry 147(22) (2022) 12301-12311. https://doi.org/10.1007/s10973-022-11478-2

S. A. Marzouk, M. M. Abou Al-Sood, E. M. El-Said, M. M. Younes, and M. K. El-Fakharany, A comprehensive review of methods of heat transfer enhancement in shell and tube heat exchangers, Journal of Thermal Analysis and Calorimetry 148(15) (2023) 7539-7578. https://doi.org/10.1007/s10973-023-12265-3

B. Sundén, Flow and heat transfer mechanisms in plate-and-frame heat exchangers. In: S. Kakaç, A.E. Bergles, F. Mayinger, H. Yüncü, (eds) Heat transfer enhancement of heat exchangers. Nato ASI Series, vol 355, 1999. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9159-1_11

O. P. Arsenyeva, L. L. Tovazhnyanskyy, P. O. Kapustenko, and G. L. Khavin, Mathematical modelling and optimal design of plate-and-frame heat exchangers, Chemical Engineering Transactions 18 (2009) 791-796. https://repository.kpi.kharkov.ua/handle/KhPI-Press/27669

O.P. Arsenyeva, L. L. Tovazhnyansky, P. Kapustenko, and G.L. Khavin, Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries, Energy 36(8) (2011) 4588-4598. https://doi.org/10.1016/j.energy.2011.03.022

P. Geiser, and V. Kottke, Transport phenomena in fluid flow of finned tube heat exchangers. In: Y. Tanida, H. Miyashiro, (eds) Flow Visualization VI. 1992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84824-7_86

A. A. Bhuiyan, and A. S. Islam, Thermal and hydraulic performance of finned-tube heat exchangers under different flow ranges: A review on modeling and experiment, International Journal of Heat and Mass Transfer 101(2016) 38-59. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.022

S. Basavarajappa, G. Manavendra, and S. B. Prakash, A review on performance study of finned tube heat exchanger. In Journal of Physics: Conference Series 1473(1) (2020) 012030. IOP Publishing. https://doi.org/10.1088/1742-6596/1473/1/012030

K. M. Stone, Review of literature on heat transfer enhancement in compact heat exchangers, Air Conditioning and Refrigeration Center TR-105 (1996) http://hdl.handle.net/2142/11540

R. K. Shah, Advances in science and technology of compact heat exchangers, Heat Transfer Engineering 27(5) (2006) 3-22. https://doi.org/10.1080/01457630600559462

Q. Li, G. Flamant, X. Yuan, P. Neveu, and L. Luo, Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers, Renewable and Sustainable Energy Reviews 15(9) (2011) 4855-4875. https://doi.org/10.1016/j.rser.2011.07.066

M. Konopacki, M. Kordas, K. Fijałkowski, and R. Rakoczy, Computational fluid dynamics and experimental studies of a new mixing element in a static mixer as a heat exchanger, Chemical and Process Engineering 36(1) (2015) 59-72. https://doi.org/10.1515/cpe-2015-0005

Y. Qi, Y. Kawaguchi, R. N. Christensen, and J. L. Zakin, Enhancing heat transfer ability of drag reducing surfactant solutions with static mixers and honeycombs, International Journal of Heat and Mass Transfer 46(26) (2003) 5161-5173. https://doi.org/10.1016/S0017-9310(03)00221-7

A. Maxson, L. Watson, P. Karandikar, and J. Zakin, Heat transfer enhancement in turbulent drag reducing surfactant solutions by agitated heat exchangers, International Journal of Heat and Mass Transfer 109 (2017) 1044-1051. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.098

M. Molki, and P. Damronglerd, Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts, Heat Transfer Engineering 27(1) (2006) 35-45. https://doi.org/10.1080/01457630500341748

S. Laohalertdecha, P. Naphon, and S. Wongwises, A review of electrohydrodynamic enhancement of heat transfer, Renewable and Sustainable Energy Reviews 11(5) (2007) 858-876. https://doi.org/10.1016/j.rser.2005.07.002

Y. B. Wang, L. F. Huang, N. Lan, S. L. Wang, B. X. Zhang, Y. R. Yang, and D. J. Lee, Heat transfer enhancement by electrohydrodynamics in wavy channels, Applied Thermal Engineering 236 (2024) 121556. https://doi.org/10.1016/j.applthermaleng.2023.121556

S. W. Chen, F. C. Liu, H. J. Lin, P. S. Ruan, Y. T. Su, Y. C. Weng, ... and W. K. Lin, Experimental test and empirical correlation development for heat transfer enhancement under ultrasonic vibration, Applied Thermal Engineering 143 (2018) 639-649. https://doi.org/10.1016/j.applthermaleng.2018.07.133

M. Setareh, M. Saffar-Avval, and A. Abdullah, Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger, Applied Thermal Engineering 159 (2019) 113867. https://doi.org/10.1016/j.applthermaleng.2019.113867

D. Zhang, E. Jiang, J. Zhou, C. Shen, Z. He, and C. Xiao, Investigation on enhanced mechanism of heat transfer assisted by ultrasonic vibration, International Communications in Heat and Mass Transfer 115 (2020) 104523. https://doi.org/10.1016/j.icheatmasstransfer.2020.104523

K. Shoele, and R. Mittal, Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer, Physics of Fluids 26 (2014) 127103. https://doi.org/10.1063/1.4903793

D. Duan, P. Ge, W. Bi, and J. Ji, Numerical investigation on the heat transfer enhancement mechanism of planar elastic tube bundle by flow-induced vibration, International Journal of Thermal Sciences 112 (2017) 450-459. https://doi.org/10.1016/j.ijthermalsci.2016.11.003

J. Fu, X. Miao, Q. Zuo, H. Tang, Y. Li, Y. Zhang, and B. Sunden, Heat transfer and field synergy characteristics in a rectangular unit channel under mechanical vibration, International Communications in Heat and Mass Transfer 136 (2022) 106176. https://doi.org/10.1016/j.icheatmasstransfer.2022.106176

Y. Menni, A. J. Chamkha, C. Zidani, and B. Benyoucef, Heat and nanofluid transfer in baffled channels of different outlet models, Mathematical Modelling of Engineering Problems 6(1) (2019) 21-28. https://doi.org/10.18280/mmep.060103

Y. Menni, A. J. Chamkha, M. Ghazvini, M. H. Ahmadi, H. Ameur, A. Issakhov, and M. Inc, Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids, Numerical Heat Transfer, Part A: Applications 79(4) (2020) 311-351. https://doi.org/10.1080/10407782.2020.1842846

Y. Menni, A. J. Chamkha, and H. Ameur, Advances of nanofluids in heat exchangers—A review, Heat Transfer 49(8) (2020) 4321-4349. https://doi.org/10.1002/htj.21829

R. Maouedj, Y. Menni, M. Inc, Y. M. Chu, H. Ameur, and G. Lorenzini, Simulating the Turbulent Hydrothermal Behavior of Oil/MWCNT Nano fluid in a Solar Channel Heat Exchanger Equipped with Vortex Generators, Computer Modeling in Engineering & Sciences 126(3) (2021) 855-889. https://doi.org/10.32604/cmes.2021.014524

A. Mahammedi, H. Ameur, Y. Menni, and D. M. Medjahed, Numerical study of turbulent flows and convective heat transfer of Al2O3-water nanofluids in a circular tube, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 77(2) (2021) 1-12. https://doi.org/10.37934/arfmts.77.2.112

A. Boursas, M. Salmi, G. Lorenzini, H. Ahmad, Y. Menni, and D. Fridja, Enhanced heat transfer by oil/multi-walled carbon nano-tubes nanofluid, Annales de Chimie Science des Materiaux 45(2) (2021) 93-103. https://doi.org/10.18280/acsm.450201

G. Wang, Z. Zhang, R. Wang, and Z. Zhu, A review on heat transfer of nanofluids by applied electric field or magnetic field, Nanomaterials 10(12) (2020) 2386. https://doi.org/10.3390/nano10122386

M. Bezaatpour, and M. Goharkhah, Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow, Applied Thermal Engineering 167 (2020) 114801. https://doi.org/10.1016/j.applthermaleng.2019.114801

X. Zhang, and Y. Zhang, Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field, International Journal of Thermal Sciences 164 (2021) 106897. https://doi.org/10.1016/j.ijthermalsci.2021.106897

A. J. Chamkha, Y. Menni, and H. Ameur, Thermal-aerodynamic performance measurement of air heat‎ transfer fluid mechanics over s-shaped fins in shell-and-tube‎ heat exchangers, Journal of Applied and Computational Mechanics 7(4) (2021) 1931-1943. https://doi.org/10.22055/JACM.2020.32107.1970

F. Djeffal, F. Tahrour, L. Bordja, A. Akgul, . Jarrar, J. Asad, and Y. Menni, Three-dimensional assessment of thermal-hydraulic behaviour in heat exchangers fitted by wavy annular fins, Thermal Science, 26(Spec. issue 1) (2022) 485-493. https://doi.org/10.2298/TSCI22S1485D

R. Rebhi, H. Ahmad, Y. Zhao, Y. Menni, and G. Lorenzini, Numerical assessment of an air-heat exchanger channel with staggered attached rectangular baffles and in-line detached square fins, Thermal Science, 27(Spec. issue 1) (2023) 343-351. https://doi.org/10.2298/TSCI23S1343R

S. Hammid, K. Naima, O. M. Ikumapayi, C. Kezrane, A. Liazid, J. Asad,... and Y. Menni, Overall assessment of heat transfer for a rarefied flow in a microchannel with obstacles using lattice Boltzmann method, Comput. Model. Eng. Sci 138 (2024) 273-299.

S. Eiamsa-ard, P. Promvonge, Numerical study on heat transfer of turbulent channel flow over periodic grooves, International Communications in Heat and Mass Transfer 35(7) (2008) 844-852. https://doi.org/10.1016/j.icheatmasstransfer.2008.03.008

P. M. Ligrani, G. I. Mahmood, J. L. Harrison, C. M. Clayton, and D. L. Nelson, Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls, International Journal of Heat and Mass Transfer 44(23) (2001) 4413-4425. https://doi.org/10.1016/S0017-9310(01)00101-6

Y. Menni, H. Ahmad, H. Ameur, S. Askar, T. Botmart, M. Bayram, and G. Lorenzini, Effects of two-equation turbulence models on the convective instability in finned channel heat exchangers, Case Studies in Thermal Engineering 31 (2022) 101824. https://doi.org/10.1016/j.csite.2022.101824

R. Chatys, and L. J. Orman, Technology and properties of layered composites as coatings for heat transfer enhancement, Mechanics of Composite Materials 53 (2017) 351-360. https://doi.org/10.1007/s11029-017-9666-8

D. H. Nguyen, and H. S. Ahn, A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger, International Journal of Heat and Mass Transfer 178 (2021) 121601. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121601

M. C. Korti, A. Youcef, A. Akgul, A. A. Alwan, K. S. Mohsen, J. Asad, ... and S. H. Abdullaev, Optimizing solar water heater performance through a numerical study of zig-zag shaped tubes, Thermal Science 27(4 Part B) (2023) 3143-3153. https://doi.org/10.2298/TSCI2304143K

A. Youcef, M. C. Korti, Y. Menni, and H. Ameur, Investigation of the thermal behavior of water flow within parallel tubes in a solar collector, Journal of applied research and technology 20(6) (2022) 679-685. https://doi.org/10.22201/icat.24486736e.2022.20.6.1110

Y. Menni, A. J. Chamkha, A. Azzi, A., and C. Zidani, Numerical analysis of fluid flow and heat transfer characteristics of a new kind of vortex generators by comparison with those of traditional vortex generators, International Journal of Fluid Mechanics Research 47(1) (2020) 23-42. https://doi.org/10.1615/InterJFluidMechRes.2019026753

Y. Menni, A. J. Chamkha, A. Azzi, and C. Zidani, Numerical analysis of fluid flow and heat transfer characteristics of a new kind of vortex generators by comparison with those of traditional vortex generators, International Journal of Fluid Mechanics Research 47(1) (2020) 23-42. https://doi.org/10.1615/InterJFluidMechRes.2019026753

M. Salmi, B. Afif, A. Akgul, R. Jarrar, H. Shanak, Y. Menni, ... and J. Asad, Turbulent flows around rectangular and triangular turbulators in baffled channels: a computational analysis, Thermal Science 26(1) (2022) 191-199. https://doi.org/10.2298/TSCI22S1191S

Y. Menni, and A. Azzi, Numerical analysis of thermal and aerodynamic fields in a channel with cascaded baffles, Periodica Polytechnica Mechanical Engineering 62(1) (2018) 16-25. https://doi.org/10.3311/PPme.10613

Y. Menni, and A. Azzi, Design and performance evaluation of air solar channels with diverse baffle structures, Computational Thermal Sciences 10(3) (2018) 225-249. https://doi.org/10.1615/ComputThermalScien.2018025026

Y. Menni, A. J. Chamkha, G. Lorenzini, and B. Benyoucef, Computational fluid dynamics based numerical simulation of thermal and thermo-hydraulic performance of a solar air heater channel having various ribs on absorber plates, Mathematical Modelling of Engineering Problems 6(2) (2019) 170-174. https://doi.org/10.18280/mmep.060203

Y. Menni, A; J. Chamkha, C. Zidani, and B. Benyoucef, Heat transfer in air flow past a bottom channel wall-attached diamond-shaped baffle–using a CFD technique, Periodica Polytechnica Mechanical Engineering 63(2) (2019) 100-112. https://doi.org/10.3311/PPme.12490

Y. Menni, A; J. Chamkha, A. Azzi, C. Zidani, and B. Benyoucef, Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers, Mathematical Modelling of Engineering Problems 6(1) (2019) 77-84. https://doi.org/10.18280/mmep.060110

H. Ameur, D. Sahel, and Y. Menni, Numerical investigation of the performance of perforated baffles in a plate-fin heat exchanger, Thermal Science 25(5 Part B) (2021) 3629-3641. https://doi.org/10.2298/TSCI190316090A

H. Ameur, D. Sahel, and Y. Menni, Enhancement of the cooling of shear-thinning fluids in channel heat exchangers by using the V-baffling technique, Thermal Science and Engineering Progress 18 (2020) 100534. https://doi.org/10.1016/j.tsep.2020.100534

A. J. Chamkha, and Y. Menni, Hydrogen Flow over a Detached V-Shaped Rib in a Rectangular Channel, Mathematical Modelling of Engineering Problems 7(2) (2020) 178-186. https://doi.org/10.18280/mmep.070202

M. Salmi, A. Boursas, M. Derradji, G. Lorenzini, H. Ahmad, Y. Menni,... and R. Maoudj, Improved heat transfer in w-baffled air-heat exchangers with upper-inlet and lower-exit, Mathematical Modelling of Engineering Problems 8(1) (2021) 1-9. https://doi.org/10.18280/mmep.080101

D. M. Medjahed, H. Ameur, R. Rebhi, M. Inc, H. Ahmad, Y. Menni,... and M. Aldhabani, Details on the hydrothermal characteristics within a solar-channel heat-exchanger provided with staggered t-shaped baffles, Energies 14(20) (2021) 6698. https://doi.org/10.3390/en14206698

B. Afif, M. Salmi, A. Akgul, R. Jarrar, J. Asad, and Y. Menni, Comparative analysis of solar air channels, z-shaped obstacles added to improve flow structure, Thermal Science 26(1) (2022) 201-210. https://doi.org/10.2298/TSCI22S1201A

S. Eiamsa-Ard, S. Sripattanapipat, A. Saysroy, P. Promvonge, N. Maruyama, and M. Hirota, Heat transfer distribution and flow characteristics in a channel with perforated-baffles, Energy Reports 8 (2022) 420-426. https://doi.org/10.1016/j.egyr.2022.10.079

H. L. Liu, H. Y. Guo, Z. L. Xie, and L. Sang, Numerical investigations for optimizing a novel micro-channel sink with perforated baffles and perforated walls, International Communications in Heat and Mass Transfer 126 (2021) 105342. https://doi.org/10.1016/j.icheatmasstransfer.2021.105342

J. Liu, S. Hussain, W. Wang, L. Wang, G. Xie, and B. Sundén, Heat transfer enhancement and turbulent flow in a rectangular channel using perforated ribs with inclined holes, Journal of Heat Transfer 141(4) (2019) 041702. https://doi.org/10.1115/1.4042841

A. D. Tuncer, A. Amini, and A. Khanlari, Developing an infrared-assisted solar drying system using a vertical solar air heater with perforated baffles and nano-enhanced black paint, Solar Energy 263 (2023) 111958. https://doi.org/10.1016/j.solener.2023.111958

D. Sahel, H. Ameur, R. Benzeguir, and Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Applied Thermal Engineering 101 (2016) 156-164. https://doi.org/10.1016/j.applthermaleng.2016.02.136

S. Chamoli, ANN and RSM approach for modeling and optimization of designing parameters for a V down perforated baffle roughened rectangular channel, Alexandria Engineering Journal 54(3) (2015) 429-446. https://doi.org/10.1016/j.aej.2015.03.018

S. Chamoli, and N. S. Thakur, Exergetic performance evaluation of solar air heater having V-down perforated baffles on the absorber plate, Journal of Thermal Analysis and Calorimetry 117 (2014) 909-923. https://doi.org/10.1007/s10973-014-3765-8

K. S; Kandukuri, P. K. Sharma, and R. K. Arun, A comparative assessment of distributive mode active solar dryers: Flat plate collector vs evacuated tube collector with thermal energy storage and perforated baffled trays, Solar Energy 271 (2024) 112421. https://doi.org/10.1016/j.solener.2024.112421

Y. Wang, C. S. Oon, J. J. Foo, M. V. Tran, S. R. Nair, and F. W. Low, Numerical investigation of thermo-hydraulic performance utilizing clove-treated graphene nanoplatelets nanofluid in an annular passage with perforated curve fins. Results in Engineering 17 (2023) 100848. https://doi.org/10.1016/j.rineng.2022.100848

G. Wang, T. Hai, J. K. S. Paw, J. Pasupuleti, and A. N. Abdalla, Numerical and ensemble machine learning-based investigation of the energy and exergy yields of a concentrating photovoltaic thermal device equipped with a perforated twisted tube turbulator, Engineering Analysis with Boundary Elements, 155 (2023) 754-765. https://doi.org/10.1016/j.enganabound.2023.06.033

Y. Wang, J. J. Foo, M. V. Tran, S. R. Nair, and C. S. Oon, Numerical investigation of thermo-hydraulic performance of perforated rectangular and sinusoidal vortex generators in a double-pipe heat exchanger, Journal of Thermal Analysis and Calorimetry (2024) 1-18. https://doi.org/10.1007/s10973-023-12838-2

K. Song, Y. He, Q. Zhang, X. Wu, A. He, and Q. Hou, Thermal performance promotion of a novel double-tube heat exchanger by helical fin with perforations, International Communications in Heat and Mass Transfer 150 (2024) 107189. https://doi.org/10.1016/j.icheatmasstransfer.2023.107189

K. Boukhadia, H. Ameur, D. Sahel, and M. Bozit, Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger, International Journal of Thermal Sciences 126 (2018) 172-180. https://doi.org/10.1016/j.ijthermalsci.2017.12.025

M. F. Ismail, M. O. Reza, M. A. Zobaer, and M. Ali, Numerical investigation of turbulent heat convection from solid and longitudinally perforated rectangular fins, Procedia Engineering 56 (2013) 497-502. https://doi.org/10.1016/j.proeng.2013.03.152

J. Li, X. Ling, and H. Peng, Field synergy analysis on convective heat transfer and fluid flow of a novel triangular perforated fin, International journal of heat and mass transfer 64 (2013) 526-535. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.039

A. H. Ganie, A. A. Memon, M. A. Memon, A. M. Al-Bugami, K. Bhatti, and I. Khan, Numerical analysis of laminar flow and heat transfer through a rectangular channel containing perforated plate at different angles, Energy Reports 8 (2022) 539-550. https://doi.org/10.1016/j.egyr.2021.11.232

H. Ameur, and Y. Menni, Laminar cooling of shear thinning fluids in horizontal and baffled tubes: Effect of perforation in baffles, Thermal Science and Engineering Progress 14 (2019) 100430. https://doi.org/10.1016/j.tsep.2019.100430

Y. Zhao, M. Lu, Y. Li, Y. Wang, and M. Ge, Numerical investigation of an exhaust thermoelectric generator with a perforated plate, Energy 263 (2023) 125776. https://doi.org/10.1016/j.energy.2022.125776

N. Biçer, T. Engin, H. Yaşar, E. Büyükkaya, A. Aydın, and A. Topuz, Design optimization of a shell-and-tube heat exchanger with novel three-zonal baffle by using CFD and taguchi method, International Journal of Thermal Sciences 155 (2020) 106417. https://doi.org/10.1016/j.ijthermalsci.2020.106417

R. B. Pérez, A; M. Pérez, and D. S. Suárez, Influence of the punched holes on thermohydraulic performance and flow pattern of rectangular channels with a pair of perforated vortex generators, International Journal of Heat and Mass Transfer 184 (2022) 122291. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122291

M. Tavakoli, and M. R. Soufivand, Investigation of entropy generation, PEC, and efficiency of parabolic solar collector containing water/Al2O3− MWCNT hybrid nanofluid in the presence of finned and perforated twisted tape turbulators using a two-phase flow scheme, Engineering Analysis with Boundary Elements 148 (2023) 324-335. https://doi.org/10.1016/j.enganabound.2022.12.022

M. E. Nakhchi, M. Hatami, and M. Rahmati, Effects of CuO nano powder on performance improvement and entropy production of double-pipe heat exchanger with innovative perforated turbulators, Advanced Powder Technology 32(8) (2021) 3063-3074. https://doi.org/10.1016/j.apt.2021.06.020

S. Javanmard, and A. Ashrafizadeh, A comparative numerical study on heat transfer and pressure drop characteristics of perforated ribs, International Journal of Thermal Sciences 191 (2023) 108373. https://doi.org/10.1016/j.ijthermalsci.2023.108373

A. Hedau, and R. P. Saini, Thermo-hydraulic performance of double pass solar air heater duct having semi-circular tubes and perforated blocks as artificial roughness, Renewable Energy 205 (2023) 543-562. https://doi.org/10.1016/j.renene.2023.01.087

Z. Zou, Z. Zhu, Q. Zhang, and P. Yang, Numerical investigation on the performance of a new type of perforated-serrated fins for plate-fin heat exchangers in cryogenic helium systems, Cryogenics, 136 (2023) 103761. https://doi.org/10.1016/j.cryogenics.2023.103761

H. Sun, H. Ma, L. Yan, H. Fu, Y. Luan, and P. Zunino, Numerical simulations on the performance of transpiration cooling implemented with perforated flat plates, Applied Thermal Engineering 238 (2024) 121943. https://doi.org/10.1016/j.applthermaleng.2023.121943

A. H. Dastbelaraki, M. Yaghoubi, M. M. Tavakol, and A. Rahmatmand, Numerical analysis of convection heat transfer from an array of perforated fins using the Reynolds averaged Navier–Stokes equations and large-eddy simulation method, Applied Mathematical Modelling 63 (2018) 660-687. https://doi.org/10.1016/j.apm.2018.06.005

S. E. Razavi, T. Adibi, and S. Faramarzi, Impact of inclined and perforated baffles on the laminar thermo-flow behavior in rectangular channels, SN Applied Sciences 2 (2020) 1-9. https://doi.org/10.1007/s42452-020-2078-8

S. Ghanbari, and K. Javaherdeh, Investigation of applying nanoporous graphene non-Newtonian nanofluid on rheological properties and thermal performance in a turbulent annular flow with perforated baffles, Journal of Thermal Analysis and Calorimetry 139 (2020) 629-647. https://doi.org/10.1007/s10973-019-08389-0

M. A. Xue, P. Z. Lin, J. H. Zheng, Y. X. Ma, X. L. Yuan, and V. T. Nguyen, Effects of perforated baffle on reducing sloshing in rectangular tank: experimental and numerical study, China Ocean Engineering 27 (2013) 615-628. https://doi.org/10.1007/s13344-013-0052-6

B. Qi, and R. Yuan, Heat transfer enhancement in a two-dimensional channel with perforated rectangular blocks using multi-layered porous foam, Journal of Thermal Analysis and Calorimetry 141 (2020) 1817-1827. https://doi.org/10.1007/s10973-020-09620-z

N. Y. Godi, Constructal Solid and Perforated Fin Installation in a Combined Microchannel Heat Sink for Maximum Heat Transfer, Journal of The Institution of Engineers (India): Series C (2024) 1-14. https://doi.org/10.1007/s40032-023-01006-y

N. Y. Godi, and M. O. Petinrin, Heat Transfer Analysis in Constructal Designed Microchannels with Perforated Micro Fins, Journal of The Institution of Engineers (India): Series C (2023) 1-12. https://doi.org/10.1007/s40032-023-00943-y

A. Gautam, L. Pandey, and S. Singh, Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube, Heat and Mass transfer 54 (2018) 2009-2021. https://doi.org/10.1007/s00231-018-2296-4

N. Van Hap, P. T. Nhan, H. P. Hien, and N. M. Phu, Thermohydraulic performance augmentation in a solar air heater using a perforated circular segment vortex generator, Environmental Science and Pollution Research 30(24) (2023) 65338-65350. https://doi.org/10.1007/s11356-023-26987-2

B. Lertnuwat, The effect of the hole position on trapezoidal winglet vortex generators in a rectangular-duct-type solar air heater, Journal of Mechanical Science and Technology 36(12) (2022) 6345-6354. https://doi.org/10.1007/s12206-022-1146-y

Z. Esmaeili, and S. Rashidi, Entropy production analysis for nanofluid flow through a channel with perforated transverse twisted-baffles, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1-20 (2022) https://doi.org/10.1080/15567036.2022.2041131

S. K. Jain, R. Misra, A. Kumar, and G. D. Agrawal, Thermal performance investigation of a solar air heater having discrete V-shaped perforated baffles, International Journal of Ambient Energy 43(1) (2022) 243-251. https://doi.org/10.1080/01430750.2019.1636874

M. R. Shaeri, and T. C. Jen, Turbulent heat transfer analysis of a three-dimensional array of perforated fins due to changes in perforation sizes, Numerical Heat Transfer, Part A: Applications 61(11) (2012) 807-822. https://doi.org/10.1080/10407782.2012.671046

M. R. Shaeri, and M. Yaghoubi, Thermal enhancement from heat sinks by using perforated fins, Energy conversion and Management 50(5) (2009) 1264-1270. https://doi.org/10.1016/j.enconman.2009.01.021

M. R. Shaeri, and M. Yaghoubi, Numerical analysis of turbulent convection heat transfer from an array of perforated fins, International journal of heat and fluid flow 30(2) (2009) 218-228. https://doi.org/10.1016/j.ijheatfluidflow.2008.12.011

X. Huang, L. Wang, and X. Li, Research on thermal performance and pressure loss of a new perforated-folded baffle solar air collector, Numerical Heat Transfer, Part A: Applications (2023) 1-20. https://doi.org/10.1080/10407782.2023.2276886

F. N. Barzoki, G. A. Sheikhzadeh, M. K. Aliabadi, and A. A. A. Arani, Assessment of vortex generator shapes for enhancing thermohydraulic performance of fluid flow in a channel equipped with perforated chevron plate-fin, International Journal of Numerical Methods for Heat & Fluid Flow 31(6) (2021) 1790-1815. https://doi.org/10.1108/HFF-02-2020-0087

B. Rostane, and S. Abboudi, Numerical Study of Laminar Fluid Flow Around Two Heated Wall-Mounted Perforated Cubes in Tandem Arrangement, International Journal of Heat and Technology 40(1) (2022) 157-166. https://doi.org/10.18280/ijht.400119

M. A. El Habet, S. A. Ahmed, and M. A. Saleh, The effect of using staggered and partially tilted perforated baffles on heat transfer and flow characteristics in a rectangular channel, International Journal of Thermal Sciences 174 (2022) 107422. https://doi.org/10.1016/j.ijthermalsci.2021.107422

S. Skullong, P. Promvonge, C. Thianpong, and M. Pimsarn, Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators, Applied Thermal Engineering 100 (2016) 611-620. https://doi.org/10.1016/j.applthermaleng.2016.01.107

A. Khanlari, H. Ö. Güler, A. D. Tuncer, C. Şirin, Y. C. Bilge, Y. Yılmaz, and A. Güngör, Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application, Renewable Energy 145 (2020) 1677-1692. https://doi.org/10.1016/j.renene.2019.07.076

J. Liu, S. Hussain, W. Wang, G. Xie, and B. Sundén, Experimental and numerical investigations of heat transfer and fluid flow in a rectangular channel with perforated ribs, International Communications in Heat and Mass Transfer 121 (2021) 105083. https://doi.org/10.1016/j.icheatmasstransfer.2020.105083

Y. Varol, B. Kok, H. Ayhan, and H. F. Oztop, Experimental study and Large Eddy Simulation of thermal mixing phenomena of a parallel jet with perforated obstacles, International Journal of Thermal Sciences 111 (2017) 1-17. https://doi.org/10.1016/j.ijthermalsci.2016.08.005

A. Vaisi, R. Moosavi, M. Lashkari, and M. M. Soltani, Experimental investigation of perforated twisted tapes turbulator on thermal performance in double pipe heat exchangers, Chemical Engineering and Processing-Process Intensification 154 (2020) 108028. https://doi.org/10.1016/j.cep.2020.108028

S. B. Chin, J. J. Foo, Y. L. Lai, and T. K. K. Yong, Forced convective heat transfer enhancement with perforated pin fins. Heat and Mass Transfer 49 (2013) 1447-1458. https://doi.org/10.1007/s00231-013-1186-z

U. V. Awasarmol, A. T. Pise, J. D. Patil, L. D. Jathar, and R. R. Verma, Experimental investigation of heat transfer enhancement by using perforated fin array having different perforation ratios, angle of inclination and configuration of fins under forced convection condition, International Communications in Heat and Mass Transfer 147 (2023) 106995. https://doi.org/10.1016/j.icheatmasstransfer.2023.106995

H. U. Tandel, and K. V. Modi, Experimental assessment of double-pass solar air heater by incorporating perforated baffles and solar water heating system, Renewable Energy 183 (2022) 385-405. https://doi.org/10.1016/j.renene.2021.10.087

S. Chamoli, A Taguchi approach for optimization of flow and geometrical parameters in a rectangular channel roughened with V down perforated baffles, Case Studies in Thermal Engineering 5 (2015) 59-69. https://doi.org/10.1016/j.csite.2015.01.001

S. Chamoli, and N. S. Thakur, Thermal behavior in rectangular channel duct fitted with v-shaped perforated baffles, Heat Transfer Engineering 36(5) (2015) 471-479. https://doi.org/10.1080/01457632.2014.935218

S. W. Chang, T. W. Chen, and Y. W. Chen, Detailed heat transfer and friction factor measurements for square channel enhanced by plate insert with inclined baffles and perforated slots, Applied Thermal Engineering 159 (2019) 113856. https://doi.org/10.1016/j.applthermaleng.2019.113856

S. Ghanbari, and K. Javaherdeh, Thermal performance enhancement in perforated baffled annuli by nanoporous graphene non-Newtonian nanofluid, Applied Thermal Engineering 167 (2020) 114719. https://doi.org/10.1016/j.applthermaleng.2019.114719

M. R. Salem, M. K. Althafeeri, K. M. Elshazly, M. G. Higazy, and M. F. Abdrabbo, Experimental investigation on the thermal performance of a double pipe heat exchanger with segmental perforated baffles, International Journal of Thermal Sciences 122 (2017) 39-52. https://doi.org/10.1016/j.ijthermalsci.2017.08.008

M. Khoshvaght-Aliabadi, M. Tatari, and M. Salami, Analysis on Al2O3/water nanofluid flow in a channel by inserting corrugated/perforated fins for solar heating heat exchangers, Renewable Energy 115 (2018) 1099-1108. https://doi.org/10.1016/j.renene.2017.08.092

M. Khoshvaght-Aliabadi, M. Farsi, S. M. Hassani, Abu-N.H. Hamdeh, and A. Alimoradi, Surface modification of transversely twisted-turbulator using perforations and winglets: An extended study, International Communications in Heat and Mass Transfer 120 (2021) 105020. https://doi.org/10.1016/j.icheatmasstransfer.2020.105020

S. Pankaj, B. Santosh, K. Kishor, and J. Sarang, Experimental investigation of heat transfer by natural convection with perforated pin fin array, Procedia Manufacturing 20 (2018) 311-317. https://doi.org/10.1016/j.promfg.2018.02.046

H. Hassan, M. S. Yousef, and S. Abo-Elfadl, Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios, Sustainable Energy Technologies and Assessments 43 (2021) 100936. https://doi.org/10.1016/j.seta.2020.100936

R. Pandey, and M. Kumar, Efficiencies assessment of an indoor designed solar air heater characterized by V baffle blocks having staggered racetrack-shaped perforation geometry, Sustainable Energy Technologies and Assessments, 47 (2021) 101362. https://doi.org/10.1016/j.seta.2021.101362

A. Saravanan, M. Murugan, M. S. Reddy, P. Ranjit, P. V. Elumalai, P. Kumar, and S. R. Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate, International Journal of Thermal Sciences 168 (2021) 107068. https://doi.org/10.1016/j.ijthermalsci.2021.107068

R. Karabacak, and G. Yakar, Forced convection heat transfer and pressure drop for a horizontal cylinder with vertically attached imperforate and perforated circular fins, Energy conversion and management 52(8-9) (2011) 2785-2793. https://doi.org/10.1016/j.enconman.2011.02.017

P. Promvonge, P. Promthaisong, and S. Skullong, Heat transfer augmentation in solar heat exchanger duct with louver-punched V-baffles, Solar Energy 248 (2022) 103-120. https://doi.org/10.1016/j.solener.2022.11.009

R. Khargotra, T. Alam, K. Thu, K. András, and T. Singh, Optimization of design parameter of V-shaped perforated blocks in rectangular duct of solar air heater by using hybrid BWM-CODAS technique, Solar Energy Materials and Solar Cells 264 (2024) 112627. https://doi.org/10.1016/j.solmat.2023.112627

R. Khargotra, R. Kumar, A. Sharma, and T. Singh, Design and performance optimization of solar water heating system with perforated obstacle using hybrid multi-criteria decision-making approach, Journal of Energy Storage 63 (2023) 107099. https://doi.org/10.1016/j.est.2023.107099

C. H. Huang, and L. W. Liu, Optimal position and perforated radius of punched vortex generators for heat sink, Case Studies in Thermal Engineering 32 (2022) 101916. https://doi.org/10.1016/j.csite.2022.101916

M. A. El Habet, S. A. Ahmed, and M. A. Saleh, Thermal/hydraulic characteristics of a rectangular channel with inline/staggered perforated baffles, International Communications in Heat and Mass Transfer 128 (2021) 105591. https://doi.org/10.1016/j.icheatmasstransfer.2021.105591

M. Molki, and A. Hashemi-Esfahanian, Turbulent convective mass transfer downstream of a perforated baffle blockage, International journal of heat and fluid flow 13(2) (1992) 116-123. https://doi.org/10.1016/0142-727X(92)90018-5

V. P. Singh, S. Jain, A. Karn, G. Dwivedi, A. Kumar, S. Mishra,... and S. Kamel, Heat transfer and friction factor correlations development for double pass solar air heater artificially roughened with perforated multi-V ribs, Case Studies in Thermal Engineering 39 (2022) 102461. https://doi.org/10.1016/j.csite.2022.102461

V. P. Singh, S. Jain, and J. M. L. Gupta, Performance assessment of double-pass parallel flow solar air heater with perforated multi-V ribs roughness—Part B, Experimental Heat Transfer 35(7) (2022) 1059-1076. https://doi.org/10.1080/08916152.2021.2019147

M. E. Nakhchi, M. Hatami, and M. Rahmati, Experimental investigation of performance improvement of double-pipe heat exchangers with novel perforated elliptic turbulators, International Journal of Thermal Sciences 168 (2021) 107057. https://doi.org/10.1016/j.ijthermalsci.2021.107057

F. Fan, C. Qi, Q. Liu, and M. Sheikholeslami, Effect of twisted turbulator perforated ratio on thermal and hydraulic performance of magnetic nanofluids in a novel thermal exchanger system, Case Studies in Thermal Engineering 22 (2020) 100761. https://doi.org/10.1016/j.csite.2020.100761

M. Sheikholeslami, and D. D. Ganji, Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators, Energy Conversion and management 127 (2016) 112-123. https://doi.org/10.1016/j.enconman.2016.08.090

J. M. Buchlin, Convective heat transfer in a channel with perforated ribs, International journal of thermal sciences 41(4) (2002) 332-340. https://doi.org/10.1016/S1290-0729(02)01323-6

C. Nuntadusit, M. Wae-Hayee, A. Bunyajitradulya, and S. Eiamsa-ard, Thermal visualization on surface with transverse perforated ribs, International communications in heat and mass transfer 39(5) (2012) 634-639. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.001

O. N. Sara, T. Pekdemir, S. İ. N. A. N. Yapici, and M. Yilmaz, Heat-transfer enhancement in a channel flow with perforated rectangular blocks, International Journal of Heat and Fluid Flow 22(5) (2001) 509-518. https://doi.org/10.1016/S0142-727X(01)00117-5

S. Eiamsa-Ard, A. Phila, M. Pimsarn, N. Maruyama, and M. Hirota, Heat transfer mechanism and thermal performance of a channel with square-wing perforated transverse baffles installed: effect of square-wing location, Journal of Thermal Analysis and Calorimetry 148(9) (2023) 3835-3849. https://doi.org/10.1007/s10973-022-11937-w

S. Eiamsa-ard, A. Phila, C. Thianpong, V. Chuwattanakul, N. Maruyama, and M. Hirota, Enhanced heat transfer performance in channel with delta-wing perforated V-type baffles, Journal of Thermal Analysis and Calorimetry 148(20) (2023) 11283-11301. https://doi.org/10.1007/s10973-023-12452-2

S. Bhattacharyya, D. K. Vishwakarma, V. Goel, S. Chamoli, A. Issakhov, and J. P. Meyer, Thermodynamics and heat transfer study of a circular tube embedded with novel perforated angular-cut alternate segmental baffles, Journal of Thermal Analysis and Calorimetry 145 (2021) 1445-1465. https://doi.org/10.1007/s10973-021-10718-1

B. E. Gel'Fand, S. P. Medvedev, A; N. Polenov, and S. A. Tsyganov, Interaction of unsteady pressure waves and perforated baffles, Fluid Dynamics, 22(6) (1987) 969-972. https://doi.org/10.1007/BF01050740

M. A. Rahman, Effectiveness of a tubular heat exchanger and a novel perforated rectangular flow-deflector type baffle plate with opposing orientation, World Journal of Engineering (2023) https://doi.org/10.1108/WJE-06-2023-0233

P. Bruno, G. Di Bella, and M. De Marchis, Perforated baffles for the optimization of disinfection treatment, Water, 12(12) (2020) 3462. https://doi.org/10.3390/w12123462

N. Nasyrlayev, M. A. Kizilaslan, A. T. Kurumus, E. Demirel, and M. M. Aral, A perforated baffle design to improve mixing in contact tanks, Water, 12(4) (2020) 1022. https://doi.org/10.3390/w12041022

M. A. Norman, and M. N. Hassan, Flow Visualization of Perforated Baffles and Impellers for Stirred Tank Reactor with Single Stage Rushton Turbine, Journal of Complex Flow, 1(1) (2019) https://fazpublishing.com/jcf/index.php/jcf/article/view/6

B. S. Ibrahim, M. H. Abdel-Aziz, E. Z. El-Ashtoukhy, T. M. Zewail, A. A. Zatout, and G.H. Sedahmed, Cementation of copper on zinc in agitated vessels equipped with perforated baffles as turbulence promoters, Mining, Metallurgy & Exploration 38 (2021) 1203-1213. https://doi.org/10.1007/s42461-020-00375-7

M. B. Bhambere, S. S. Chaudhari, and G. K. Awari, Review on design and heat transfer analysis of solid and perforated fins for the enhancement of thermal performance of heat sinks. In 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET) (2019) (pp. 210-214). IEEE. https://doi.org/10.1109/ICITAET47105.2019.9170217

A. Sakanova, Heat transfer enhancement of perforated pin heat sink in future aircraft applications, Applied Thermal Engineering 124 (2017) 315-326. https://doi.org/10.1016/j.applthermaleng.2017.06.031

A. Al-Damook, N. Kapur, J. L. Summers, and H. M. Thompson, Computational design and optimisation of pin fin heat sinks with rectangular perforations, Applied Thermal Engineering 105 (2016) 691-703. https://doi.org/10.1016/j.applthermaleng.2016.03.070

J. H. Choi, S. Mhetras, J. C. Han, S. C. Lau, and R. Rudolph, Film cooling and heat transfer on two cutback trailing edge models with internal perforated blockages, J. Heat Transfer 130(1) (2018) 012201, https://doi.org/10.1115/1.2780174

Y. Ye, X. Li, J. Ren, and H. Jiang, Effect of holes shape on cooling performance of trailing edge of gas turbine blade with perforated blockages with inclined holes. In Turbo Expo: Power for Land, Sea, and Air (vol. 50879, 2017, p. V05AT16A004). American Society of Mechanical Engineers. https://doi.org/10.1115/GT2017-63219

H. Chung, J. S. Park, H. S. Sohn, D. H. Rhee, and H. H. Cho, Trailing edge cooling of a gas turbine blade with perforated blockages with inclined holes. In Turbo Expo: Power for Land, Sea, and Air (Vol. 55140, 2013, p. V03AT12A043). American Society of Mechanical Engineers. https://doi.org/10.1115/GT2013-95445

M. J. Hasan, K. Tawkir, and A. A. Bhuiyan, Improvement of an exhaust gas recirculation cooler using discrete ribbed and perforated louvered strip vortex generator, International Journal of Thermofluids 13 (2022) 100132. https://doi.org/10.1016/j.ijft.2022.100132

O. Heriyani, M. Djaeni, A. K. Putri, Perforated concave rectangular winglet pair vortex generators enhance the heat transfer of air flowing through heated tubes inside a channel, Results in Engineering 16 (2022) 100705. https://doi.org/10.1016/j.rineng.2022.100705

Y. Effendi, A. Prayogo, M. Syaiful, M. Djaeni, and E. Yohana, Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel, Experimental Heat Transfer, 35(5) (2022) 553-576. https://doi.org/10.1080/08916152.2021.1919245

M. Assari, S. Banihashemi, M. Setareh, and A. M. Nargesi Motlagh, Numerical study of thermal characteristics and pressure drop in a pipe equipped with innovative perforated and hollow spherical inserts, Journal of Thermal Analysis and Calorimetry, 148(20) (2023) 11325-11348. https://doi.org/10.1007/s10973-023-12422-8

G. P. Srivastava, A. K. Patil, and M. Kumar, Parametric effect of diverging perforated cones on the thermo-hydraulic performance of a heat exchanger tube. Heat and Mass Transfer, 57(9) (2021), 1425-1437. https://doi.org/10.1007/s00231-021-03035-8

S. Bhattacharyya, M. Pathak, M. Sharifpur, S. Chamoli, S., and D. R. Ewim, Heat transfer and exergy analysis of solar air heater tube with helical corrugation and perforated circular disc inserts, Journal of Thermal Analysis and Calorimetry 145 (2021) 1019-1034. https://doi.org/10.1007/s10973-020-10215-x

S. L. Sharma, S. Singh, A. Debbarma, and K. S. Mehra, Experimental assessment of thermal performance and fluid flow characteristics of perforated hollow elliptical insert in a tube heat exchanger, Arabian Journal for Science and Engineering 48(9) (2023) 11499-11510. https://doi.org/10.1007/s13369-022-07501-1

Downloads

Published

2025-05-01

How to Cite

[1]
M. Menni, N. Kaid, M. A. Alkhafaji, M. Bayram, O. M. Ikumapayi, and A. J. Chamkha, “Enhancing heat transfer performance: A comprehensive review of perforated obstacles”, Rev. Mex. Fís., vol. 71, no. 3 May-Jun, pp. 030601 1–, May 2025.