Study of all-pass optical micro-ring resonators using titanium- and zinc oxides on an insulating platform via atomic layer deposition

Authors

  • J. D. Castro-Toscano CICESE
  • R. Salas-Montiel Université de Technologie de Troyes
  • D. Jauregui-Vazquez Departamento de Optica, CICESE
  • H. Tiznado CNyN, UNAM
  • E. G. Lizarraga-Medina Unidad Valle de las Palmas, UABC
  • A. G. Navarrete-Alcala Departamento de Optica, CICESE
  • H. Marquez-Becerra Departamento de Optica, CICESE https://orcid.org/0000-0002-1831-4759

DOI:

https://doi.org/10.31349/RevMexFis.71.041303

Keywords:

High refractive index materials, Atomic layer deposition, Channel waveguide, all-pass optical ring resonator, numerical analysis, finite element method

Abstract

Atomic layer deposition (ALD) is a versatile technique to grow thin films for a wide range of applications including energy conversion and electronics. Materials deposited on insulating platforms through ALD can expand their use in optics and photonics. In this work, we present the design of an integrated optics all-pass micro-ring resonators based on measured optical properties of ALD materials, particularly, titanium- and zinc oxides (TiO2 and ZnO on insulator). For optical communication applications, zinc oxide on an insulator (ZOI) provides mode confinement of 46%, an evanescent decay of 855 nm, and a quality factor of up to 104 at 1550 nm. Atomic layer deposited core materials on an insulator provide an effective alternative for optics and photonics.

Author Biographies

R. Salas-Montiel, Université de Technologie de Troyes

Laboratory Light, nanomaterials, and nanotechnology - L2n CNRS EMR 7004, Université de Technologie de Troyes, 10004, Troyes, France. 

Rank: Titular Researcher

D. Jauregui-Vazquez, Departamento de Optica, CICESE

Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860, México.

Rank: Titular Researcher

H. Tiznado, CNyN, UNAM

Centro de Nano ciencias y Nanotecnología, Universidad Autónoma de México, Apdo. Postal 14, C.P. 22800, Ensenada, B.C, México.

Rank: Titular Researcher

E. G. Lizarraga-Medina, Unidad Valle de las Palmas, UABC

Universidad Autónoma de Baja California, UABC, C.P. 22260, Blvd Universitario 1000 Valle de las Palmas, Tijuana, B.C.

Rank: Professor

A. G. Navarrete-Alcala, Departamento de Optica, CICESE

Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860, México.

Rank:  Researcher

H. Marquez-Becerra, Departamento de Optica, CICESE

Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860, México.

Rank: Titular Researcher

References

M. H. Sani, S. Khosroabadi, and A. Shokouhmand, A novel design for 2-bit optical analog to digital (A/D) converter based on nonlinear ring resonators in the photonic crystal structure, Optics Communications, 458 (2020) 124760. https://doi.org/10.1016/j.optcom.2019.124760

J. Meng, M. Miscuglio, J. K. George, A. Babakhani, and V. J. Sorger, Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters, Advanced Photonics Research 2 (2021) 2000033. https://doi.org/10.1002/adpr.202000033

M. Hamidah and R. W. Purnamaningsih, An S-bend based optical directional coupler using GaN semiconductor, 2019 IEEE International Conference on Innovative Research and Development (ICIRD), (2019) 1-4. https://doi.org/10.1109/ICIRD47319.2019.9074743

R. W. Purnamaningsih, N. R. Poespawati, T. Abuzairi, and E. Dogheche, An optical power divider based on mode coupling using GaN/Al2O3 for underwater communication, Photonics, 6 (2019) 063, https://doi.org/10.3390/photonics6020063

V. Zamora, P. Lützow, M. Weiland, and D. Pergande, Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm, Optics Express, 21 (2013) 27550, https://doi.org/10.1364/OE.21.027550

F. M. Prat et al., Self-referenced sensor, Google Patents, (2022)

V. Melissinaki, O. Tsilipakos, M. Kafesaki, M. Farsari, and S. Pissadakis, Micro-ring resonator devices prototyped on optical fiber tapers by multi-photon lithography, IEEE Journal of Selected Topics in Quantum Electronics 27 (2021) 1, https://doi.org/10.1109/JSTQE.2021.3062716

W. Bogaerts et al., Silicon microring resonators, Laser and Photonics Reviews 6 (2012) 47, https://doi.org/10.1002/lpor.201100017

P. Girault et al., Integrated polymer micro-ring resonators for optical sensing applications, Journal of Applied Physics, 117 (2015) 4914308, https://doi.org/10.1063/1.4914308

L. Chang, M. de Goede, M. Dijkstra, C. I. van Emmerik, and S. M. García-Blanco, Modular microring laser cavity sensor, Optics Express, 29 (2021) 1371, https://doi.org/10.1364/OE.411811

C. Vieu et al., Electron beam lithography: resolution limits and applications, Applied Surface Science, 164 (2000) 111- 117. https://doi.org/10.1016/S0169-4332(00)00352-4

J. A. Jurado-González et al., TiO2−x films as a prospective material for slab waveguides prepared by atomic layer deposition, Optics & Laser Technology, 158 (2023) 108880. https://doi.org/10.1016/j.optlastec.2022.108880

H. A. Borbon-Núñez, D. Domínguez, F. Muñoz Muñoz, J. López, J. Romo-Herrera, G. Soto, and H. Tiznado, Fabrication of hollow TiO2 nanotubes through atomic layer deposition and MWCNT templates, Powder Technology 308 (2017) 249- 257. https://doi.org/10.1016/j.powtec.201612.001

E. G. Lizárraga-Medina et al., Optical waveguides fabricated in atomic layer deposited Al2O3 by ultrafast laser ablation, Results in Optics 5 (2021) 100060. https://doi.org/10.1016/j.rio.2021.100060

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, Design and fabrication of SOI microring resonators based on sub-wavelength grating waveguides, Optics Express 23 (2015) 4791. https://doi.org/10.1364/oe.23.004791

T. Barwicz et al., Microring-resonator-based add-drop filters in SiN: Fabrication and analysis. Optics Express, 12 (2004) 1437-1442. https://doi.org/10.1364/OPEX. 12.001437

G. M. Hasan et al., Ring resonator gap determination design rule and parameter extraction method for sub-GHz resolution whole C-band Si3N4 integrated spectrometer. Photonics, 9 (2022) 51. https://doi.org/10.3390/photonics9090651

M. Fu et al., High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Optics Express 28 (2020) 39084. https://doi.org/10.1364/oe.404821

Z. Chen, et al., Efficient and compact sol-gel TiO2 thermooptic microring resonator modulator. Optical Materials Express 12 (2022) 4061. https://doi.org/10.1364/ome.472722

X. Zhang, Z. Li, Y. Sun, and K. Tong, Simulation of ZnOcoated SOI microring resonant shift response to ethanol and ammonia. Optik, 125 (2014) 2752, https://doi.org/10.1016/j.ijleo.2013.11.037

C. Jiang, C. Tang, and J. Song, The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection. Nano Letters, 15 (2015) 1128, https://doi.org/10.1021/nl504135x

D. L. Caballero-Espitia et al., Study of Al2O3 thin films by ALD using H2O and O3 as oxygen source for waveguide applications. Optical Materials 109 (2020) 110370. https://doi.org/10.1016/j.optmat.2020.110370

B. López et al., Third-order nonlinear optical properties of a multi-layer Al2O3/ZnO for nonlinear optical waveguides. Optics Express 27 (2019) 17359-17368. https://doi.org/10.1364/OE.27.017359

D. Rabus, Integrated ring resonators: The compendium. (Springer 2007). https://doi.org/10.1007/978-3-540-68788-7

P. O. Oviroh, R. Akbarzadeh, D. Pan, R. A. M. Coetzee, and T. C. Jen, New development of atomic layer deposition: Processes, methods and applications. Science and Technology of Advanced Materials, 20 (2019) 465-496. https://doi.org/10.1080/14686996.2019.1599694

B. Sánchez, Diseño, fabricación y caracterización de guías de onda ópticas de óxido de zinc. [Master’s thesis]. Centro de Investigacion Científica y de Educación Superior (2023)

T. Tran, V. A. Pham, P. Le, T. Nguyen, and V. Tran, Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advanced Natural Science: Nanosci. Nanotechnol., 4 (2013) 045007, https://doi.org/10.1088/2043-6262/4/4/045007

T. Rajakaruna, C. Udawatte, R. Chandrajith, and R. Rajapakse, Nonhazardous process for extracting pure titanium dioxide nanorods from geogenic ilmenite. ACS Omega (2020). https://doi.org/10.1021/acsomega.0c01756

G. Valverde-Aguilar, and J. Zepeda, Photoluminescence and photoconductivity studies on amorphous and crystalline ZnO thin films obtained by sol-gel method. Applied Physics A, 118 (2014) 1305, https://doi.org/10.1007/s00339-014-8836-y

A. Kaushalram, G. Hegde, and S. Talabattula, Mode hybridization analysis in thin film lithium niobate strip multimode waveguides. Scientific Reports 10 (2020). https://doi.org/10.1038/s41598-020-73936-x

S. Jahani, Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nature Communications 9 (2018) 8, https://doi.org/10.1038/s41467-018-04276-8

X. Wu, and L. Tong, Optical microfibers and nanofibers. Nanophotonics 2 (2013) 407-428. https://doi.org/10.1515/nanoph-2013-0033

R. Castillo-Perez et al., Comparative modal analysis in micronano-optical fiber tapers using spectral parameter power series method and exact modes method. Journal of Computational Electronics 22 (2023) 690, https://doi.org/10.1007/s10825-023-02006-y

X. Cheng, J. Hong, A. M. Spring, and S. Yokoyama, Fabrication of a high-Q factor ring resonator using LSCVD deposited Si3N4 film. Optical Materials Express, 7 (2017) 2182, https://doi.org/10.1364/OME.7.002182

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Optics Express, 14 (2006) 4695- 4702. https://doi.org/10.1364/OE.14.004695

L. Sun, Y. Zhang, Y. He, H. Wang, and Y. Su, Subwavelength structured silicon waveguides and photonic devices. Nanophotonics, 9 (2020) 1321, https://doi.org/10.1515/nanoph-2020-0070

L. R. Chen, J. Wang, B. Naghdi, and I. Glesk, Subwavelength grating waveguide devices for telecommunications applications. IEEE Journal of Selected Topics in Quantum Electronics, 25 (2019) 1, https://doi.org/10.1109/JSTQE.2018.2879015

J. Haas, P. Artmann, and B. Mizaikoff, Mid-infrared GaAs/AlGaAs micro-ring resonators characterized via thermal tuning. RSC Advances, 9 (2019) 8594, https://doi.org/10.1039/C8RA10395J

P. P. Absil et al., Wavelength conversion in GaAs micro-ring resonators. Optics Letters, 25 (2000) 554, https://doi.org/10.1364/OL.25.000554

R. Armand et al., Mid-infrared integrated silicon-germanium ring resonator with high Q-factor. APL Photonics, 8 (2023) 071301. https://doi.org/10.1063/5.0149324

R. Morgan, C. Heidelberger, D. Kharas, K. Cahoy, and C. Sorace-Agaskar, Low-loss germanium-on-silicon waveguides and ring resonators for the mid-wave infrared. In Conference on Lasers and Electro-Optics, Technical Digest Series (Optica Publishing Group), paper SW5O.1. (2022)

M. Furuhashi Development of microfabricated TiO2 channel waveguides. AIP Advances 1 (2011), https://doi.org/10.1063/1.3615716

C. Evans, C. Liu, and J. Suntivich, Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process. Optics Express, 23 (2015) 11160, https://doi.org/10.1364/OE.23.011160

M. Fu et al., High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Optics Express, 28 (2020) 39084, https://doi.org/10.1364/oe.404821

Y. Shen et al., Femtosecond laser writing of waveguides in zinc oxide crystals: Fabrication and mode modulation. Optics Express, 30 (2022) 27694, https://doi.org/10.1364/OE.30.027694

P. Struk et al., Planar optical waveguides based on thin ZnO layers. Acta Physica Polonica Series A, 116 (2009) 68, https://doi.org/10.12693/APhysPolA.116.414

A. Autere et al., High-quality slot waveguide ring resonator based on atomic layer deposition. Proceedings of SPIE - The International Society for Optical Engineering, 9367 (2015), https://doi.org/10.1117/12.2076903

A. Autere et al., Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate. Optics Express, 23 (2015) 26940, https://doi.org/10.1364/OE.23.026940

M. Fu et al., High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Optics Express 28 (2020) 39084, https://doi.org/10.1364/oe.404821

COMSOL. (2018). Wave Optics Module User’s Guide (COMSOL 5.4). Retrieved from https://doc.comsol.com/5.4/doc/com.comsol.help.woptics/WaveOpticsModuleUsersGuide.pdf

Downloads

Published

2025-07-01

How to Cite

[1]
J. D. Castro Toscano, “Study of all-pass optical micro-ring resonators using titanium- and zinc oxides on an insulating platform via atomic layer deposition”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 041303 1–, Jul. 2025.