3T Eulerian-radiation description of graphite laser induced plasma under Martian conditions
DOI:
https://doi.org/10.31349/RevMexFis.71.011501Keywords:
3T-Eurlian model; NLTE; LIBS; mars; plasma physicsAbstract
We report the results of a simulation of the laser-induced breakdown spectra of graphite in an atmosphere similar to that of Mars using a non-equilibrium 3T-Eurlian fluid model. In our approach the atomic energy level populations were calculated using a collisional-radiative (CR) NLTE-model taking into account the mixing between the plasma and the ambiant gas. The simulation was performed with the FLASH radiation-hydrodynamics code. We have investigate the effects of laser irradiance and ambient CO2 pressure on the plasma parameters namely the electron and ion temperatures and the electron and ion densities and the temporal variation of the fluid velocity with the laser irradiance at constant pressure which indicate the presence of a shock front associated with the plasma initiation, dynamics, and expansion into the ambient gas.
References
Mars exploration program, Curiosity Rover Mission Overview. https://mars.nasa.gov/msl/mission/overview/
C. Fabre and B. Bousquet, De ChemCam a SuperCam: l’apport ´ de la LIBS pour le spatial, Photoniques 103 2020, https://doi.org/10.1051/photon/202010338
K.A. Farley et al. Mars 2020 Mission Overview, Space Sci Rev, 216 (2020) 142, https://doi.org/10.1007/s11214-020-00762-y
F. Colao, R. Fantoni, V. Lazic, and A. Paolini, LIBS application for analyses of Martian crust analogues:search for the optimal experimental parameters in air and CO2 atmosphere, Appl. Phys. A, 79 (2004) 143, https://doi.org/10.1007/s00339-003-2262-x
M. Capitelli, A. Casavola, G. Colonna and A.D. Giacomo, Laser-induced plasma ex- pansion: theoretical and experimental aspects, Spectrochim. Acta B At. Spectrosc., 59 (2004) 271, https://doi.org/10.1016/j.sab.2003.12.017
A. Cousin et al., Laser induced breakdown spectroscopy library for the martian environment, Spectrochim. Acta B At. Spectrosc., 66 (2011) 805, https://doi.org/10.1016/j.sab.2011.10.004
J. Colgan et al., Theoretical modeling and analysis of the emission spectra of a ChemCam standard: basalt BIR-1A, Spectrochim. Acta B At. Spectrosc. 110 (2015) 20, https://doi.org/10.1016/j.sab.2015.05.005
E. Ewusi-Annan, D. M. Surmick, N. Melikechi and R.C. Wiens, Simulated laser-induced breakdown spectra of graphite and synthetic shergottite glass under Martian conditions, Spectrochimica Acta Part B, 148 (2018) 31, https://doi.org/10.1016/j.sab.2018.06.006
P. B. Hansen, S. Schröder, S. Kubitza, K. Rammelkamp, D. S. Vogt, and H.-W. Hübers, Modeling of time-resolved LIBS spectra obtained in Martian atmospheric conditions with a stationary plasma approach, Spectrochimica Acta Part B: Atomic Spectroscopy, 178 (2021) 106115, https://doi.org/10.1016/j.sab.2021.106115
G. Cristoforetti et al., Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion, Spectrochim. Acta - Part B At. Spectrosc., 65 (2010) 86, https://doi.org/10.1016/j.sab.2009.11.005
A. Alberti et al., Laser-induced non-equilibrium plasma kernel dynamics, J. Phys. D: Appl. Phys., 53 (2020) 025201, https://doi.org/10.1088/1361-6463/ab492a
N. G. Glumac and G. S. Elliott, The effect of ambient pressure on laser-induced plasmas in air, Opt. Lasers Eng., 45 (2007) 27, https://doi.org/10.1016/j.optlaseng.2006.04.002
N. Tsuda and J. Yamada, Observation of forward breakdown mechanism in high-pressure argon plasma produced by irradiation by an excimer laser, J. Appl. Phys., 81 (1996) 96, https://doi.org/10.1063/1.364200
J. Macfarlane, I. Golovkin, and P. Woodruff, HELIOSCR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling, J. Quant. Spectrosc. Radiat. Transf., 99 (2006) 381, https://doi.org/10.1016/j.jqsrt.2005.05.031
The Flash Center for Computational Science, FLASH User’s Guide Version-4.6.2, University of Rochester, (2019). https://flash.rochester.edu/site/flashcode/user support/
P. MacNeice, K. M. Olson, C. Mobarry, R. De Fainchtein and C. Packer, PARAMESH: A parallel adaptive mesh refinement community toolkit, Computer Physics Communications 126 (2000) 330, https://doi.org/10.1016/S0010-4655(99)00501-9
C. Orban, Fatenejad M., Chawla S., Wilks S. and Lamb D., A Radiation-Hydrodynamics Code Comparison for LaserProduced Plasmas: FLASH versus HYDRA and the Results of Validation Experiments, LLNL-JRNL:Physics.plasm-ph, 7 (2013) 636375, https://doi.org/10.48550/arXiv.1306.1584
J.J. MacFarlane, IONMIX-a code for computing the equation of state and radiative properties of LTE and non-LTE plasmas, Comput. Phys. Comm., 56 (1989) 259, https://doi.org/10.1016/0010-4655(89)90023-4
D. Lee, A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics, J. Comput. Phys., 243 (2013) 269, https://doi.org/10.1016/j.jcp.2013.02.049
P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 171, https://doi.org/10.1016/0021-9991(90)90233-Q
S. Li, An HLLC Riemann solver for magneto-hydrodynamics, J. Comput. Phys., 203 (2005) 344, https://doi.org/10. 1016/j.jcp.2004.08.020
The HYPRE library is available at: https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
D. Mihalas and B. W. Mihalas, Foundations of radiation hydrodynamics, Oxford University Press, New York, (1984) ISBN 0-19-503437-6
J. I. Castor, Radiation Hydrodynamics, Cambridge University Press, (2004). ISBN: 9780511536182
L. Spitzer, Physics of Fully Ionized Gases, Interscience Publishers, New York, (1962) ISNB: 3-978-0486449821
S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics, Oxford University Press, (2004) ISBN: 9780198562641
H. Brysk, P.M. Campbell, and P. Hammerling, Thermal conduction in laser fusion, Plasma Phys., 17 (1974) 473, https://doi.org/10.1088/0032-1028/17/6/007
The Flash Center for Computational Science, available online https://flash.rochester.edu/
P. Tzeferacos et al., FLASH MHD simulations of experiments that study shock-generated magnetic fields, High Energy Density Phys., 17 (2015) 24, https://doi.org/10.1016/j.hedp.2014.11.003
B. Fryxell et al., FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, The Astrophysical Journal Supplement Series, 131 (2000) 273, https://doi.org/10.1086/317361
D. Lee and A. E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys., 228 (2009) 952, https://doi.org/10.1016/j.jcp.2008.08.026
M. M. Marinak et al., NP8.00100: New capabilities in HYDRA for simulations of inertial confinement fusion targets, in 51st Annual Meeting of the APS Division of Plasma Physics (American Physical Society, 2009), Vol. 54 p. 15. Site: https://meetings.aps.org/Meeting/DPP09/Content/1617
T.B. Kaiser, Laser ray tracing and power deposition on an unstructured three- dimensional grid, Phys. Rev. E, 61 (2000) 895, https://doi.org/10.1103/PhysRevE.61.895
A. Kramida, Yu. Ralchenko, and J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 5.9), [Online]. Available: https://www.nist.gov/pml/atomic-spectra-database
S. Acquaviva and M. L. D. Giorgi, High-resolution investigations of C2 and CN optical emissions in laser-induced plasmas during graphite ablation, J. Phys. B Atomic Mol. Phys., 35 (2002) 795, https://doi.org/10.1088/0953-4075/35/4/304
S. Maurice et al., The ChemCam instrument suite on the Mars science laboratory (MSL) rover: science objectives and mast unit description, Space Sci. Rev., 170 (2012) 95, https://doi.org/10.1007/s11214-012-9912-2
J. R. Davies et al., Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion, Physics of Plasmas, 25 (2018) 062704, https://doi.org/10.1063/1.5030107
A. J. Harvey-Thompson et al., Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion, Physics of Plasmas, 22 (2015) 122708, https://doi.org/10.1063/1.4938047
K. Gillen-Christandl, D. Gillen Glen, M. J. Piotrowicz and M. Saffman, Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits, Appl. Phys. B, 122 (2016) 131, https://doi.org/10.1007/s00340-016-6407-y
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, (2002) ISBN: 9780511791253
E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer Science & Business Media, (2009) ISBN: 978-3-540-49834-6
M. J. Turk, A multi-code analysis toolkit for astrophysical Simulation data, The Astrophysical Journal Supplement Series, 192 (2011) 16, https://doi.org/10.1088/0067-0049/192/1/9
S.S. Harilal, C.V. Bindhu, R.C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, Electron density and temperature measurements in a laser produced carbon plasma, J. Appl. Phys., 82 (1997) 2140, https://doi.org/10.1063/1.366276
T.A. Heltemes and G.A. Moses, BADGER v1.0: A Fortran equation of state library, Computer Physics Communications 183 (2012) 2629, https://doi.org/10.1016/j.cpc.2012.07.010
Z. Chen, Z. Chen, W. Jiang, L. Guo, and Y. Zhang, Line intensity calculation of laser-induced breakdown spectroscopy during plasma expansion in nonlocal thermodynamic equilibrium, Opt. Lett. 48 (2023) 3227, https://doi.org/10.1364/OL.488250
A.K. Sharma and R.K. Thareja, Plume dynamics of laserproduced aluminum plasma in ambient nitrogen, Applied Surface Science 243 (2005) 68, https://doi.org/10.1016/j.apsusc.2004.09.093
T.E. Itina, J. Hermann, P. Delaporte, and M. Sentis, Laser-generated plasma plume expansion: combined continuous-microscopic modeling, Phys. Rev. E 66 (2002) 066406, https://doi.org/10.1103/PhysRevE.66.066406
M. Skocic and S. Bukvic, Laser induced plasma expansion and existence of local thermodynamic equilibrium, Spectrochim. Acta B At. Spectrosc. 125 (2016) 103, https://doi.org/10.1016/j.sab.2016.09.011
M. Dong, J. Lu, S. Yao, Z. Zhong, J. Li and W. Lu, Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing c and n, Opt. Express 18 (2011) 17021, https://doi.org/10.1364/OE.19.017021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 K. Benbaier, A. Abdelmalek, Zeyneb Bedrane
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.