Application of Laskin Fractional Quantum mechanics with a changed fractional differential operator to one-dimensional potentials

Authors

  • L. Y. Medina Facultad de Ciencias Básicas, Universidad de Medellín
  • J. D. Correa Facultad de Ciencias Básicas, Universidad de Medellín
  • M. E. Mora-Ramos Universidad Autónoma del Estado de Morelos https://orcid.org/0000-0002-6232-9958
  • J. F. Pérez-Torres Escuela de Química, Universidad Industrial de Santander

DOI:

https://doi.org/10.31349/RevMexFis.71.020703

Keywords:

Fractional quantum mechanics; 1D problems; Riemann-Liouville-Caputo formulation; conformable formulation

Abstract

We studied the quantum mechanics problem of certain one-dimensional potential functions using Laskin fractional quantum mechanics. We used different representations to describe the kinetic energy operator, including the conformable and Riemann-Liouville-Caputo fractional differential operators. We then compared each approach's energy states and wave function outcomes for single and double rectangular and harmonic potentials. As the fractional index increased, there was a noticeable difference between the excited level energy values resulting from each method. Additionally, we find a noticeable change in the probability density when the system exhibits degenerate states. Our results provide a straightforward and standardized approach for solving the one-dimensional fractional Schrödinger equation numerically.

References

I.Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications (Mathematics in Science and Engineering, Academic Press, San Diego, USA, 1998)

N. Laskin, Fractals and quantum mechanics, Chaos: An Interdisciplinary Journal of Nonlinear Science 10 (2000) 780, https://doi.org/10.1063/1.1050284. 3. N. Laskin, Fractional Schrödinger equation, Phys. Rev. E 66 (2002) 056108, https://doi.org/10.1103/PhysRevE.66.056108

N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62 (2000) 3135, https://doi.org/10.1103/PhysRevE.62.3135

J. Dong and M. Xu, Some solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys. 48 (2007) 072105, https://doi.org/10.1063/1.2749172

L. Y. Medina, F. Núñez-Zarur, and J. F. Pérez-Torres, Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation, International Journal of Quantum Chemistry 119 (2019) e25952. https://doi.org/10.1002/qua.25952

R. Khalil et al., A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264 (2014) 65, https://doi.org/10.1016/j.cam.2014.01.002

W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, Journal of Computational and Applied Mathematics 290 (2015) 150, https://doi.org/10.1016/j.cam.2015.04.049

M. K. A. Kaabar et al., Novel Investigation of Multivariable Conformable Calculus for Modeling Scientific Phenomena, Journal of Mathematics 2021 (2021) 3670176, https://doi.org/10.1155/2021/3670176

N. Korichi, A. Boumali, and H. Hassanabadi, Thermal properties of the one-dimensional space quantum fractional Dirac Oscillator, Physica A: Statistical Mechanics and its Applications 587 (2022) 126508, https://doi.org/10.1016/j.physa.2021.126508

W. S. Chung et al., The effect of fractional calculus on the formation of quantum-mechanical operators, Mathematical Methods in the Applied Sciences 43 (2020) 6950, https://doi.org/10.1002/mma.6445

E. M. Rabei, M. Al-Masaeed, and A. Al-Jamel, Solution of the Conformable Angular Equation of the Schrödinger Equation, arXiv:2203.11615 [quantph], https://doi.org/10.48550/arXiv.2203.11615

E. O. Odoh and A. S. Njapba, A review of semiconductor quantum well devices, Advances in Physics Theories and Applications 46 (2015)

14. N. Grandjean, B. Damilano, and J. Massies, Group-III nitride quantum heterostructures grown by molecular beam epitaxy, Journal of Physics: Condensed Matter 13 (2001) 6945, https://doi.org/10.1088/0953-8984/13/32/305

Y. Wei, The Infinite Square Well Problem in the Standard, Fractional, and Relativistic Quantum Mechanics, International Journal of Theoretical and Mathematical Physics 5 (2015) 58, https://doi.org/10.5923/j.ijtmp.20150504.02

R. Hermann, Infrared spectroscopy of diatomic molecules a fractional calculus approach, International Journal of Modern Physics B 27 (2013) 1350019, https://doi.org/10.1142/S0217979213500197

V. Jelic and F. Marsiglio, The double-well potential in quantum mechanics: a simple, numerically exact formulation, European Journal of Physics 33 (2012) 1651, https://doi.org/10.1088/0143-0807/33/6/1651

S.-F. Ma, Y. Qu, and S.-L. Ban, Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs, Chinese Physics B 27 (2018) 027103, https://doi.org/10.1088/1674-1056/27/2/027103

E. Kasapoglu, M. B. Yücel, and C. A. Duque, Parabolic Gaussian Double Quantum Wells under a Nonresonant Intense Laser Field, Nanomaterials 13 (2023) 1360, https://doi.org/10.3390/nano13081360

E. V. Kirichenko et al., Lévy flights in an infinite potential well as a hypersingular Fredholm problem., Physical Review E 93 (2016) 052110, https://doi.org/10.1103/PhysRevE.93.052110

Y. Wei, Comment on Fractional quantum mechanics and Fractional Schrödinger equation, Phys. Rev. E 93 (2016) 066103, https://doi.org/10.1103/PhysRevE.93.066103

R. Khalil and H. Abu-Shaab, Solution of some conformable fractional deferenctial equations, International J. Pure and Applied Math. 103 (2015) 667, http://dx.doi.org/10.12732/ijpam.v103i4.6

Downloads

Published

2025-03-01

How to Cite

[1]
L. Y. Medina, J. D. Correa, M. E. Mora-Ramos, and J. F. Pérez-Torres, “Application of Laskin Fractional Quantum mechanics with a changed fractional differential operator to one-dimensional potentials”, Rev. Mex. Fís., vol. 71, no. 2 Mar-Apr, pp. 020703 1–, Mar. 2025.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory